Acromegaly radiation therapy

Revision as of 20:20, 19 September 2012 by Vishnu Vardhan Serla (talk | contribs)
Jump to navigation Jump to search

Acromegaly Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Acromegaly from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Radiation Therapy

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Acromegaly radiation therapy On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Acromegaly radiation therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Acromegaly radiation therapy

CDC on Acromegaly radiation therapy

Acromegaly radiation therapy in the news

Blogs on Acromegaly radiation therapy

Directions to Hospitals Treating Acromegaly

Risk calculators and risk factors for Acromegaly radiation therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Radiation Therapy

Radiation therapy has been used both as a primary treatment and combined with surgery or drugs. It is usually reserved for patients who have tumor remaining after surgery. These patients often also receive medication to lower GH levels. Radiation therapy is given in divided doses over four to six weeks. This treatment lowers GH levels by about 50 percent over 2 to 5 years. Patients monitored for more than 5 years show significant further improvement. Radiation therapy causes a gradual loss of production of other pituitary hormones with time. Loss of vision and brain injury, which have been reported, are very rare complications of radiation treatments.

No single treatment is effective for all patients. Treatment should be individualized depending on patient characteristics, such as age and tumor size. If the tumor has not yet invaded surrounding brain tissues, removal of the pituitary adenoma by an experienced neurosurgeon is usually the first choice. After surgery, a patient must be monitored for a long time for increasing GH levels. If surgery does not normalize hormone levels or a relapse occurs, a doctor will usually begin additional drug therapy. The first choice should be bromocriptine because it is easy to administer; octreotide is the second alternative. With both medications, long-term therapy is necessary because their withdrawal can lead to rising GH levels and tumor re-expansion. Radiation therapy is generally used for patients whose tumors are not completely removed by surgery; for patients who are not good candidates for surgery because of other health problems; and for patients who do not respond adequately to surgery and medication.

References

Template:WH Template:WS