Intracranial aneurysms

Jump to navigation Jump to search
Intracranial aneurysms

WikiDoc Resources for Intracranial aneurysms

Articles

Most recent articles on Intracranial aneurysms

Most cited articles on Intracranial aneurysms

Review articles on Intracranial aneurysms

Articles on Intracranial aneurysms in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Intracranial aneurysms

Images of Intracranial aneurysms

Photos of Intracranial aneurysms

Podcasts & MP3s on Intracranial aneurysms

Videos on Intracranial aneurysms

Evidence Based Medicine

Cochrane Collaboration on Intracranial aneurysms

Bandolier on Intracranial aneurysms

TRIP on Intracranial aneurysms

Clinical Trials

Ongoing Trials on Intracranial aneurysms at Clinical Trials.gov

Trial results on Intracranial aneurysms

Clinical Trials on Intracranial aneurysms at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Intracranial aneurysms

NICE Guidance on Intracranial aneurysms

NHS PRODIGY Guidance

FDA on Intracranial aneurysms

CDC on Intracranial aneurysms

Books

Books on Intracranial aneurysms

News

Intracranial aneurysms in the news

Be alerted to news on Intracranial aneurysms

News trends on Intracranial aneurysms

Commentary

Blogs on Intracranial aneurysms

Definitions

Definitions of Intracranial aneurysms

Patient Resources / Community

Patient resources on Intracranial aneurysms

Discussion groups on Intracranial aneurysms

Patient Handouts on Intracranial aneurysms

Directions to Hospitals Treating Intracranial aneurysms

Risk calculators and risk factors for Intracranial aneurysms

Healthcare Provider Resources

Symptoms of Intracranial aneurysms

Causes & Risk Factors for Intracranial aneurysms

Diagnostic studies for Intracranial aneurysms

Treatment of Intracranial aneurysms

Continuing Medical Education (CME)

CME Programs on Intracranial aneurysms

International

Intracranial aneurysms en Espanol

Intracranial aneurysms en Francais

Business

Intracranial aneurysms in the Marketplace

Patents on Intracranial aneurysms

Experimental / Informatics

List of terms related to Intracranial aneurysms

Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [1] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.

Overview

The catastrophic potential of intracranial aneurysms, arteriovenous malformations (AVMs), and arteriovenous fistulas (AVFs) and the complexity of their pathogenesis have made them the subject of intense interest and study over the past 80 years. Advances in the ability to treat these lesions have been paralleled by rigorous research on their pathophysiology. An increase in the longevity of the population over the past century and improvements in imaging techniques contribute to more frequent encounters with these lesions by neurosurgeons and interventionists. Despite numerous clinical and laboratory research projects studying the pathophysiology of these lesions, much remains to be learned. In this chapter, we will discuss the pathophysiology of various types of intracranial aneurysms, as well as AVMs and AVFs.

Berry Aneurysms

Berry aneurysms arise at vessel bifurcations or curves. These aneurysms occur mostly between the ages of 40 and 70 years. The pathogenesis of berry aneurysms is multifactorial. Compelling evidence suggests that hemodynamic factors as well as degenerative histological changes in the parent vessel wall contribute to aneurysm formation. Early in the process of berry aneurysm formation, destruction and eventual loss of the media occur

  1. Stehbens WE. Flow in glass models of arterial bifurcations and berry aneurysms at low Reynolds numbers. Q J Exp Physiol Cogn Med Sci 1975;60(3):181-192.
  2. Kittelberger R, Davis PF, Stehbens WE. Distribution of type IV collagen, laminin, nidogen and fibronectin in the haemodynamically stressed vascular wall. Histol Histopathol 1990;5(2):161-167.
  3. Steinberg GK CM. Morphology and structural pathology. In: Awad IA B, DL, editor. Giant Intracranial Aneurysms. Park Ridge: AANS; 1995. p. 1-11.
  4. Qureshi AI, Suarez JI, Parekh PD, Sung G, Geocadin R, Bhardwaj A, et al. Risk factors for multiple intracranial aneurysms. Neurosurgery 1998;43(1):22-27.
  5. Qureshi AI, Sung GY, Suri MF, Straw RN, Guterman LR, Hopkins LN. Factors associated with aneurysm size in patients with subarachnoid hemorrhage: effect of smoking and aneurysm location. Neurosurgery 2000;46(1):44-50.
  6. Qureshi AI, Suri MF, Yahia AM, Suarez JI, Guterman LR, Hopkins LN, et al. Risk factors for subarachnoid hemorrhage. Neurosurgery 2001;49(3):607-613.
  7. Chason J. Berry aneurysms of the circle of Willis: results of a planned autopsy study. Neurology 1958;8:41-44.
  8. Weir B. Intracranial aneurysms. In: Wilkins RH RS, editor. Neurosurgery: McGraw Hill; 1985. p. 1308-1329.
  9. Suzuki J. Multiple aneurysms: treatment. In: Pia HW LC, Zierski J, editor. Cerebral aneurysms: advances in diagnosis and therapy. Berlin: Springer; 1979. p. 352-363.
  10. Hop JW, Rinkel GJ, Algra A, van Gijn J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke 1997;28(3):660-664.
  11. Mayberg MR, Batjer HH, Dacey R, Diringer M, Haley EC, Heros RC, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Circulation 1994;90(5):2592-2605.
  12. Bendok BR, Getch CC, Malisch TW, Batjer HH. Treatment of aneurysmal subarachnoid hemorrhage. Semin Neurol 1998;18(4):521-531.
  13. Frazee JG, Cahan LD, Winter J. Bacterial intracranial aneurysms. J Neurosurg 1980;53(5):633-641.
  14. Bohmfalk GL, Story JL, Wissinger JP, Brown WE, Jr. Bacterial intracranial aneurysm. J Neurosurg 1978;48(3):369-382.
  15. Molinari GF, Smith L, Goldstein MN, Satran R. Pathogenesis of cerebral mycotic aneurysms. Neurology 1973;23(4):325-332.
  16. Venkatesh SK, Phadke RV, Kalode RR, Kumar S, Jain VK. Intracranial infective aneurysms presenting with haemorrhage: an analysis of angiographic findings, management and outcome. Clin Radiol 2000;55(12):946-953.
  17. Pootrakul A, Carter LP. Bacterial intracranial aneurysm: importance of sequential angiography. Surg Neurol 1982;17(6):429-431.
  18. Kovoor JM, Jayakumar PN, Srikanth SG, Sampath S. Intracranial infective aneurysms: angiographic evaluation with treatment. Neurol India 2001;49(3):262-266.
  19. Hurst RW, Judkins A, Bolger W, Chu A, Loevner LA. Mycotic aneurysm and cerebral infarction resulting from fungal sinusitis: imaging and pathologic correlation. AJNR Am J Neuroradiol 2001;22(5):858-863.
  20. Yamaura A. Nontraumatic intracranial arterial dissection: Natural history, diagnosis, and treatment. Contemp Neurosurg 1994;16(5):1-6.
  21. Batjer H, Suss RA, Samson D. Intracranial arteriovenous malformations associated with aneurysms. Neurosurgery 1986;18(1):29-35.
  22. Fisher W. Concomitant intracranial aneurysms and arteriovenous malformations. In: Wilkins RH RS, editor. Neurosurgery. New York: McGraw Hill; 1996.
  23. Berenstein A, Lasjaunias P. Surgical Neuroangiography. New York: Springer-Verlag; 1999, p. 1-88.
  24. Kondziolka D, Nixon BJ, Lasjaunias P, Tucker WS, TerBrugge K, Spiegel SM. Cerebral arteriovenous malformations with associated arterial aneurysms: hemodynamic and therapeutic considerations. Can J Neurol Sci 1988;15(2):130-134.
  25. Miyasaka K, Wolpert SM, Prager RJ. The association of cerebral aneurysms, infundibula, and intracranial arteriovenous malformations. Stroke 1982;13(2):196-203.
  26. Redekop G, TerBrugge K, Montanera W, Willinsky R. Arterial aneurysms associated with cerebral arteriovenous malformations: classification, incidence, and risk of hemorrhage. J Neurosurg 1998;89(4):539-546.
  27. Burton C, Johnston J. Multiple cerebral aneurysms and cardiac myxoma. N Engl J Med 1970;282(1):35-36.
  28. Fisher C. Cerebral miliary aneurysms in hypertension. Am J Pathol 1971;66:313-330.
  29. Ondra SL, Troupp H, George ED, Schwab K. The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg 1990;73(3):387-391.
  30. Kondziolka D, McLaughlin MR, Kestle JR. Simple risk predictions for arteriovenous malformation hemorrhage. Neurosurgery 1995;37(5):851-855.
  31. Uranishi R, Baev NI, Ng PY, Kim JH, Awad IA. Expression of endothelial cell angiogenesis receptors in human cerebrovascular malformations. Neurosurgery 2001;48(2):359-368.
  32. Wong JH, Awad IA, Kim JH. Ultrastructural pathological features of cerebrovascular malformations: a preliminary report. Neurosurgery 2000;46(6):1454-1459.
  33. Rothbart D, Awad IA, Lee J, Kim J, Harbaugh R, Criscuolo GR. Expression of angiogenic factors and structural proteins in central nervous system vascular malformations. Neurosurgery 1996;38(5):915-925.
  34. Tomlinson FH, Rufenacht DA, Sundt TM, Jr., Nichols DA, Fode NC. Arteriovenous fistulas of the brain and the spinal cord. J Neurosurg 1993;79(1):16-27.
  35. Bendok BR, Getch CC, Frederiksen J, Batjer HH. Resection of a large arteriovenous fistula of the brain using low-flow deep hypothermic cardiopulmonary bypass: technical case report. Neurosurgery 1999;44(4):888-891.
  36. Malek AM, Halbach VV, Higashida RT, Phatouros CC, Meyers PM, Dowd CF. Treatment of dural arteriovenous malformations and fistulas. Neurosurg Clin N Am 2000;11(1):147-166.





Template:SIB


Template:WikiDoc Sources