SLC25A1: Difference between revisions

Jump to navigation Jump to search
m (Bot: HTTP→HTTPS)
Line 1: Line 1:
{{Infobox_gene}}
{{Use dmy dates|date=April 2016}}
{{Use dmy dates|date=April 2016}}
{{Infobox_gene}}
'''Tricarboxylate transport protein, mitochondrial''' is a [[protein]] that in humans is encoded by the ''SLC25A1'' [[gene]].<ref name="pmid8666394">{{cite journal | vauthors = Heisterkamp N, Mulder MP, Langeveld A, ten Hoeve J, Wang Z, Roe BA, Groffen J | title = Localization of the human mitochondrial citrate transporter protein gene to chromosome 22Q11 in the DiGeorge syndrome critical region | journal = Genomics | volume = 29 | issue = 2 | pages = 451–6 |date=August 1996 | pmid = 8666394 | pmc =  | doi =10.1006/geno.1995.9982  }}</ref><ref name="pmid9254007">{{cite journal | vauthors = Iacobazzi V, Lauria G, Palmieri F | title = Organization and sequence of the human gene for the mitochondrial citrate transport protein | journal = DNA Seq | volume = 7 | issue = 3–4 | pages = 127–39 |date=September 1997 | pmid = 9254007 | pmc =  | doi =  10.3109/10425179709034029}}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SLC25A1 solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6576| accessdate = }}</ref>
Mutations in this gene have been associated with the [[inborn error of metabolism]] [[2-Hydroxyglutaric aciduria|combined D-2- and L-2-hydroxyglutaric aciduria]].<ref name="pmid= 23561848">{{cite journal  |vauthors=Nota B, Struys EA, Pop A, etal | title=Deficiency in SLC25A1, Encoding the Mitochondrial Citrate Carrier, Causes Combined D-2- and L-2-Hydroxyglutaric Aciduria. | journal=Am. J. Hum. Genet. |volume=92 |issue=  4|pages= 627–631 |year= 2013 |pmid= 23561848 |doi= 10.1016/j.ajhg.2013.03.009 |pmc=3617390}}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box BotSee Template:PBB_Controls to Stop updates. -->
The tricarboxylate transport protein, also referred to as citrate carrier (CIC), tricarboxylate carrier, or citrate transport protein, is part of the [[mitochondrial carrier]] gene family SLC25.<ref name="Palmieri_2013">{{cite journal | vauthors = Palmieri F | title = The mitochondrial transporter family SLC25: identification, properties and physiopathology | journal = Molecular Aspects of Medicine | volume = 34 | issue = 2–3 | pages = 465–84 | date = April 2013 | pmid = 23266187 | doi = 10.1016/j.mam.2012.05.005 }}</ref><ref name="Palmieri_2004">{{cite journal | vauthors = Palmieri F | title = The mitochondrial transporter family (SLC25): physiological and pathological implications | journal = Pflügers Archiv | volume = 447 | issue = 5 | pages = 689–709 | date = February 2004 | pmid = 14598172 | doi = 10.1007/s00424-003-1099-7 }}</ref><ref name="Iacobazzi_2013">{{cite journal | vauthors = Iacobazzi V, Infantino V, Palmieri F | title = Transcriptional Regulation of the Mitochondrial Citrate and Carnitine/Acylcarnitine Transporters: Two Genes Involved in Fatty Acid Biosynthesis and β-oxidation | journal = Biology | volume = 2 | issue = 1 | pages = 284–303 | date = January 2013 | pmid = 24832661 | pmc = 4009865 | doi = 10.3390/biology2010284 }}</ref>  It is a [[protein]] in humans encoded by the ''SLC25A1'' [[gene]].<ref name="pmid8666394">{{cite journal | vauthors = Heisterkamp N, Mulder MP, Langeveld A, ten Hoeve J, Wang Z, Roe BA, Groffen J | title = Localization of the human mitochondrial citrate transporter protein gene to chromosome 22Q11 in the DiGeorge syndrome critical region | journal = Genomics | volume = 29 | issue = 2 | pages = 451–6 | date = September 1995 | pmid = 8666394 | pmc =  | doi = 10.1006/geno.1995.9982 }}</ref><ref name="pmid9254007">{{cite journal | vauthors = Iacobazzi V, Lauria G, Palmieri F | title = Organization and sequence of the human gene for the mitochondrial citrate transport protein | journal = DNA Sequence | volume = 7 | issue = 3–4 | pages = 127–39 | date = September 1997 | pmid = 9254007 | pmc =  | doi = 10.3109/10425179709034029 }}</ref><ref name="entrez">{{cite web|url=https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6576|title=Entrez Gene: SLC25A1 solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1|access-date=}}</ref>  High levels of the tricarboxylate transport protein are found in the liver, pancreas and kidney.  Lower or no levels are present in the brain, heart, skeletal muscle, placenta and lung.<ref name="Palmieri_2013" /><ref name="Iacobazzi_2013" />
{{PBB_Summary
 
| section_title =  
The tricarboxylate transport protein is located within the inner mitochondria membrane.  It provides a link between the mitochondrial matrix and cytosol by transporting [[Citric acid|citrate]] through the impermeable inner mitochondrial membrane in exchange for malate from the cytosol.<ref name="Palmieri_2013" /><ref name="Palmieri_2004" /><ref name="Iacobazzi_2013" /><ref name="Berg_2015">{{cite book | title = Biochemistry | first1 = Jeremy M. | last1 = Berg | first2 = John L. | last2 = Tymoczko | first3 = Gregory J. | last3 = Gatto | first4 = Lubert | last4 = Stryer | name-list-format = vanc | publisher=W.H. Freeman & Company|year=2015|isbn=978-1-4641-2610-9|location=New York|pages=551}}</ref>  The citrate transported out of the mitochondrial matrix by the tricarboxylate transport protein is catalyzed by [[ATP citrate lyase|citrate lyase]] to [[Acetyl-CoA|acetyl CoA]], the starting material for [[Fatty acid synthesis|fatty acid biosynthesis]], and [[Oxaloacetic acid|oxaloacetate]].<ref name="Palmieri_2004" /> As well, cytosolic NADPH + H<sup>+</sup> necessary for fatty acid biosynthesis is generated in the reduction of oxaloacetate to malate and pyruvate by malate deydrogenase and the malic enzyme.<ref name="Iacobazzi_2013" /><ref>{{cite book | title = Fundamentals of Biochemistry| first1 = Donald | last1 = Voet | first2 = Judith G. | last2 = Voet | first3 = Charlotte W. | last3 = Pratt | name-list-format = vanc | publisher=Wiley|year=2016|isbn=978-1-118-91840-1|location=U.S.A.|pages=687–688}}</ref><ref>{{cite book | title = Principles of Biochemistry | first1 = David L. | last1 = Nelson | first2 = Michael M. | last2 = Cox | name-list-format = vanc |publisher=W.H. Freeman & Company|year=2017|isbn=978-1-4641-2611-6|location=New York|pages=818–819}}</ref>  For these reasons, the tricarboxylate transport protein is considered to play a key role in fatty acid synthesis.<ref name="Palmieri_2004" />
| summary_text =  
 
}}
== Structure ==
[[File:Bovine mitochondrial ADP-ATP carrier 1.png|thumb|left|A 3D cartoon depiction of the tripartite structure of a mitochondrial transport protein, generated from 23CE bovine mitochondrial [[ADP/ATP translocase|ADP-ATP carrier]]]]
[[File:Bovine mitochondrial ADP-ATP carrier 2.png|thumb|left|A zoomed in image of the C and N termini and the two loops linking the repeated domains on the cytoplasmic side of the inner mitochondrial membrane.]]
[[File:Bovine mitochondrial ADP-ATP carrier 3.png|thumb|left|A zoomed in image of the three loops linking the two α-helices of each repeated domain located on the matrix side of the membrane.]]
The structure of the tricarboxylate transport protein is consistent with the structures of other mitochondrial carriers.<ref name="Palmieri_2013" /><ref name="Palmieri_2004" /><ref name="Berg_2015" />  In particular, the tricarboxylate transport protein has a tripartite structure consisting of three repeated domains that are approximately 100 amino acids in length.<ref name="Palmieri_2013" /><ref name="Berg_2015" />  Each repeat forms a transmembrane domain consisting of two hydrophobic α-helices.<ref name="Palmieri_2013" /><ref name="Palmieri_2004" /><ref name="King_2016">{{cite journal | vauthors = King MS, Kerr M, Crichton PG, Springett R, Kunji ER | title = Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier | journal = Biochimica et Biophysica Acta | volume = 1857 | issue = 1 | pages = 14–22 | date = January 2016 | pmid = 26453935 | pmc = 4674015 | doi = 10.1016/j.bbabio.2015.09.013 }}</ref>  The amino and carboxy termini are located on the cytosolic side of the inner mitochondrial membrane.<ref name="Palmieri_2013" /><ref name="Palmieri_2004" />  Each domain is linked by two hydrophilic loops located on the cytosolic side of the membrane.<ref name="Palmieri_2013" /><ref name="Palmieri_2004" /><ref name="King_2016" /><ref name="Majd_2018">{{cite journal | vauthors = Majd H, King MS, Smith AC, Kunji ER | title = Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis | journal = Biochimica et Biophysica Acta | volume = 1859 | issue = 1 | pages = 1–7 | date = January 2018 | pmid = 29031613 | doi = 10.1016/j.bbabio.2017.10.002 }}</ref>  The two α-helices of each repeated domain are connected by hydrophilic loops located on the matrix side of the membrane.<ref name="Palmieri_2013" /><ref name="Palmieri_2004" /><ref name="Majd_2018" />  A salt bridge network is present on both the matrix side and cytoplasmic side of the tricarboxylate transport protein.<ref name="Majd_2018" />
 
== Transport mechanism ==
The tricarboxylate transport protein exists in two states: a cytoplasmic state where it accepts malate from the cytoplasm and a matrix state where it accepts citrate from the mitochondrial matrix.<ref name="Robinson_2006">{{cite journal | vauthors = Robinson AJ, Kunji ER | title = Mitochondrial carriers in the cytoplasmic state have a common substrate binding site | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 8 | pages = 2617–22 | date = February 2006 | pmid = 16469842 | pmc = 1413793 | doi = 10.1073/pnas.0509994103 }}</ref>  A single binding site is present near the center of the cavity of the tricarboxylate transport protein, which can be either exposed to the cytosol or the mitochondrial matrix depending on the state.<ref name="King_2016" /><ref name="Majd_2018" /><ref name="Robinson_2006" />  A substrate induced conformational change occurs when citrate enters from the matrix side and binds to the central cavity of the tricarboxylate transport protein.<ref name="Palmieri_2013" />  This conformational change opens a gate on the cytosolic side and closes the gate on the matrix side.<ref name="Palmieri_2013" />  Likewise, when malate enters from the cytosolic side, the matrix gate opens and the cytosolic gate closes.<ref name="Palmieri_2013" />  Each side of the transporter is open and closed by the disruption and formation of the salt bridge networks, which allows access to the single binding site.<ref name="King_2016" /><ref name="Majd_2018" /><ref name="Robinson_2006" /><ref>{{cite journal | vauthors = Robinson AJ, Overy C, Kunji ER | title = The mechanism of transport by mitochondrial carriers based on analysis of symmetry | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 105 | issue = 46 | pages = 17766–71 | date = November 2008 | pmid = 19001266 | pmc = 2582046 | doi = 10.1073/pnas.0809580105 }}</ref><ref>{{cite journal | vauthors = Kunji ER, Robinson AJ | title = The conserved substrate binding site of mitochondrial carriers | journal = Biochimica et Biophysica Acta | volume = 1757 | issue = 9–10 | pages = 1237–48 | date = September 2006 | pmid = 16759636 | doi = 10.1016/j.bbabio.2006.03.021 }}</ref>
 
== Disease relevance ==
Mutations in this gene have been associated with the inborn error of metabolism combined D-2- and L-2-hydroxyglutaric aciduria,<ref name="pmid= 23561848">{{cite journal | vauthors = Nota B, Struys EA, Pop A, Jansen EE, Fernandez Ojeda MR, Kanhai WA, Kranendijk M, van Dooren SJ, Bevova MR, Sistermans EA, Nieuwint AW, Barth M, Ben-Omran T, Hoffmann GF, de Lonlay P, McDonald MT, Meberg A, Muntau AC, Nuoffer JM, Parini R, Read MH, Renneberg A, Santer R, Strahleck T, van Schaftingen E, van der Knaap MS, Jakobs C, Salomons GS | title = Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined D-2- and L-2-hydroxyglutaric aciduria | journal = American Journal of Human Genetics | volume = 92 | issue = 4 | pages = 627–31 | date = April 2013 | pmid = 23561848 | pmc = 3617390 | doi = 10.1016/j.ajhg.2013.03.009 }}</ref> which was the first reported case of a pathogenic mutation of the SLC25A1 gene.<ref name="Majd_2018" /><ref name="Hoffmann_2016">{{cite book | chapter = Cerebral Organic Acid Disorders and Other Disorders of Lysine Catabolism | vauthors = Hoffmann GF, Köckler S | title=Inborn Metabolic Diseases | veditors =  Saudubray JM, Baumgartner M, Walter J |publisher=Springer|year=2016|isbn=978-3-662-49771-5|location=Germany|pages=344}}</ref>  Patients with D-2/L-2-hydroxyglutaric aciduria display neonatal onset metabolic encephalopathy, infantile epilepsy, global developmental delay, muscular hypotonia and early death.<ref name="Majd_2018" /><ref name="Hoffmann_2016" /><ref name=":0">{{cite journal | vauthors = Cohen I, Staretz-Chacham O, Wormser O, Perez Y, Saada A, Kadir R, Birk OS | title = A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: Possible phenotypic expansion | journal = American Journal of Medical Genetics. Part A | volume = 176 | issue = 2 | pages = 330–336 | date = February 2018 | pmid = 29226520 | doi = 10.1002/ajmg.a.38574 }}</ref>  It is believed low levels of citrate in the cytosol and high levels of citrate in the mitochondria caused by the impaired citrate transport plays a role in the disease.<ref name="Majd_2018" /><ref name=":0" />  In addition, increased expression of the tricarboxylate transport protein has been linked to cancer<ref name="Iacobazzi_2013" /><ref>{{cite journal | vauthors = Jiang L, Boufersaoui A, Yang C, Ko B, Rakheja D, Guevara G, Hu Z, DeBerardinis RJ | title = Quantitative metabolic flux analysis reveals an unconventional pathway of fatty acid synthesis in cancer cells deficient for the mitochondrial citrate transport protein | journal = Metabolic Engineering | volume = 43 | issue = Pt B | pages = 198–207 | date = September 2017 | pmid = 27856334 | pmc = 5429990 | doi = 10.1016/j.ymben.2016.11.004 }}</ref><ref>{{Cite journal|last=Wan-angkan|first=P. |display-authors=etal|date=2018|title=Combination of Mitochondrial and Plasma Membrane Citrate Transporter Inhibitors Inhibits De Novo Lipogenesis Pathway and Triggers Apoptosis in Hepatocellular Carcinoma Cells|journal=BioMed Research International|volume=2018|pages=1–15|doi=10.1155/2018/3683026|pmid=29546056|pmc=5818947}}</ref> and the production of inflammatory mediators.<ref>{{cite journal | vauthors = Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, Palmieri F, Iacobazzi V | title = The mitochondrial citrate carrier: a new player in inflammation | journal = The Biochemical Journal | volume = 438 | issue = 3 | pages = 433–6 | date = September 2011 | pmid = 21787310 | doi = 10.1042/BJ20111275 | url = https://hal.archives-ouvertes.fr/hal-00617325 }}</ref><ref name="Infantino_2014">{{cite journal | vauthors = Infantino V, Iacobazzi V, Menga A, Avantaggiati ML, Palmieri F | title = A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation | journal = Biochimica et Biophysica Acta | volume = 1839 | issue = 11 | pages = 1217–1225 | date = November 2014 | pmid = 25072865 | pmc = 4346166 | doi = 10.1016/j.bbagrm.2014.07.013 }}</ref><ref>{{cite journal | vauthors = Palmieri EM, Spera I, Menga A, Infantino V, Porcelli V, Iacobazzi V, Pierri CL, Hooper DC, Palmieri F, Castegna A | title = Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation | journal = Biochimica et Biophysica Acta | volume = 1847 | issue = 8 | pages = 729–38 | date = August 2015 | pmid = 25917893 | doi = 10.1016/j.bbabio.2015.04.009 }}</ref>  Therefore, it has been suggested that inhibition of the tricarboxylate transport protein may have a therapeutic effect in chronic inflammation diseases and cancer.<ref name="Infantino_2014" />


==See also==
== See also ==
* {{MeshName|SLC25A1+protein,+human}}
*{{MeshName|SLC25A1+protein,+human}}
{{clear}}


==References==
== References ==
{{reflist}}
{{reflist|32em}}


==Further reading==
== Further reading ==
{{refbegin | 2}}
{{refbegin|32em}}
{{PBB_Further_reading
* {{cite journal | vauthors = Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D | title = Large-scale mapping of human protein-protein interactions by mass spectrometry | journal = Molecular Systems Biology | volume = 3 | issue = 1 | pages = 89 | year = 2007 | pmid = 17353931 | pmc = 1847948 | doi = 10.1038/msb4100134 }}
| citations =
* {{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8 | date = October 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }}
*{{cite journal   |vauthors=Ewing RM, Chu P, Elisma F, etal |title=Large-scale mapping of human protein–protein interactions by mass spectrometry. |journal=Mol. Syst. Biol. |volume=3 |issue= 1|pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 | pmc=1847948 }}
* {{cite journal | vauthors = Gong W, Emanuel BS, Collins J, Kim DH, Wang Z, Chen F, Zhang G, Roe B, Budarf ML | title = A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11 | journal = Human Molecular Genetics | volume = 5 | issue = 6 | pages = 789–800 | date = June 1996 | pmid = 8776594 | doi = 10.1093/hmg/5.6.789 | citeseerx = 10.1.1.539.9441 }}
*{{cite journal   |vauthors=Rual JF, Venkatesan K, Hao T, etal |title=Towards a proteome-scale map of the human protein–protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
* {{cite journal | vauthors = Goldmuntz E, Wang Z, Roe BA, Budarf ML | title = Cloning, genomic organization, and chromosomal localization of human citrate transport protein to the DiGeorge/velocardiofacial syndrome minimal critical region | journal = Genomics | volume = 33 | issue = 2 | pages = 271–6 | date = April 1996 | pmid = 8660975 | doi = 10.1006/geno.1996.0191 }}
*{{cite journal   |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504  | pmc=528928 }}
* {{cite journal | vauthors = Bonofiglio D, Santoro A, Martello E, Vizza D, Rovito D, Cappello AR, Barone I, Giordano C, Panza S, Catalano S, Iacobazzi V, Dolce V, Andò S | title = Mechanisms of divergent effects of activated peroxisome proliferator-activated receptor-γ on mitochondrial citrate carrier expression in 3T3-L1 fibroblasts and mature adipocytes | journal = Biochimica et Biophysica Acta | volume = 1831 | issue = 6 | pages = 1027–36 | date = June 2013 | pmid = 23370576 | doi = 10.1016/j.bbalip.2013.01.014 }}
*{{cite journal  |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899  | pmc=139241 }}
*{{cite journal  |vauthors=Gong W, Emanuel BS, Collins J, etal |title=A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11. |journal=Hum. Mol. Genet. |volume=5 |issue= 6 |pages= 789–800 |year= 1996 |pmid= 8776594 |doi=10.1093/hmg/5.6.789 }}
*{{cite journal | vauthors=Goldmuntz E, Wang Z, Roe BA, Budarf ML |title=Cloning, genomic organization, and chromosomal localization of human citrate transport protein to the DiGeorge/velocardiofacial syndrome minimal critical region. |journal=Genomics |volume=33 |issue= 2 |pages= 271–6 |year= 1997 |pmid= 8660975 |doi= 10.1006/geno.1996.0191 }}
}}
*{{cite journal   |vauthors=Bonofiglio D, Santoro A, Martello E, etal |title=Mechanisms of divergent effects of activated peroxisome proliferator-activated receptor-γ on mitochondrial citrate carrier expression in 3T3-L1 fibroblasts and mature adipocytes. |journal=bbalip |volume=1831 |issue= 6|pages= 1027 |year= 2013 |pmid=     23370576 |doi= 10.1016/j.bbalip.2013.01.014 }}
{{refend}}
{{refend}}


{{NLM content}}
{{NLM content}}
{{Membrane transport proteins}}
{{Membrane transport proteins}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


[[Category:Solute carrier family]]
[[Category:Solute carrier family]]
{{membrane-protein-stub}}

Revision as of 18:23, 22 October 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

The tricarboxylate transport protein, also referred to as citrate carrier (CIC), tricarboxylate carrier, or citrate transport protein, is part of the mitochondrial carrier gene family SLC25.[1][2][3] It is a protein in humans encoded by the SLC25A1 gene.[4][5][6] High levels of the tricarboxylate transport protein are found in the liver, pancreas and kidney. Lower or no levels are present in the brain, heart, skeletal muscle, placenta and lung.[1][3]

The tricarboxylate transport protein is located within the inner mitochondria membrane. It provides a link between the mitochondrial matrix and cytosol by transporting citrate through the impermeable inner mitochondrial membrane in exchange for malate from the cytosol.[1][2][3][7] The citrate transported out of the mitochondrial matrix by the tricarboxylate transport protein is catalyzed by citrate lyase to acetyl CoA, the starting material for fatty acid biosynthesis, and oxaloacetate.[2] As well, cytosolic NADPH + H+ necessary for fatty acid biosynthesis is generated in the reduction of oxaloacetate to malate and pyruvate by malate deydrogenase and the malic enzyme.[3][8][9] For these reasons, the tricarboxylate transport protein is considered to play a key role in fatty acid synthesis.[2]

Structure

File:Bovine mitochondrial ADP-ATP carrier 1.png
A 3D cartoon depiction of the tripartite structure of a mitochondrial transport protein, generated from 23CE bovine mitochondrial ADP-ATP carrier
File:Bovine mitochondrial ADP-ATP carrier 2.png
A zoomed in image of the C and N termini and the two loops linking the repeated domains on the cytoplasmic side of the inner mitochondrial membrane.
File:Bovine mitochondrial ADP-ATP carrier 3.png
A zoomed in image of the three loops linking the two α-helices of each repeated domain located on the matrix side of the membrane.

The structure of the tricarboxylate transport protein is consistent with the structures of other mitochondrial carriers.[1][2][7] In particular, the tricarboxylate transport protein has a tripartite structure consisting of three repeated domains that are approximately 100 amino acids in length.[1][7] Each repeat forms a transmembrane domain consisting of two hydrophobic α-helices.[1][2][10] The amino and carboxy termini are located on the cytosolic side of the inner mitochondrial membrane.[1][2] Each domain is linked by two hydrophilic loops located on the cytosolic side of the membrane.[1][2][10][11] The two α-helices of each repeated domain are connected by hydrophilic loops located on the matrix side of the membrane.[1][2][11] A salt bridge network is present on both the matrix side and cytoplasmic side of the tricarboxylate transport protein.[11]

Transport mechanism

The tricarboxylate transport protein exists in two states: a cytoplasmic state where it accepts malate from the cytoplasm and a matrix state where it accepts citrate from the mitochondrial matrix.[12] A single binding site is present near the center of the cavity of the tricarboxylate transport protein, which can be either exposed to the cytosol or the mitochondrial matrix depending on the state.[10][11][12] A substrate induced conformational change occurs when citrate enters from the matrix side and binds to the central cavity of the tricarboxylate transport protein.[1] This conformational change opens a gate on the cytosolic side and closes the gate on the matrix side.[1] Likewise, when malate enters from the cytosolic side, the matrix gate opens and the cytosolic gate closes.[1] Each side of the transporter is open and closed by the disruption and formation of the salt bridge networks, which allows access to the single binding site.[10][11][12][13][14]

Disease relevance

Mutations in this gene have been associated with the inborn error of metabolism combined D-2- and L-2-hydroxyglutaric aciduria,[15] which was the first reported case of a pathogenic mutation of the SLC25A1 gene.[11][16] Patients with D-2/L-2-hydroxyglutaric aciduria display neonatal onset metabolic encephalopathy, infantile epilepsy, global developmental delay, muscular hypotonia and early death.[11][16][17] It is believed low levels of citrate in the cytosol and high levels of citrate in the mitochondria caused by the impaired citrate transport plays a role in the disease.[11][17] In addition, increased expression of the tricarboxylate transport protein has been linked to cancer[3][18][19] and the production of inflammatory mediators.[20][21][22] Therefore, it has been suggested that inhibition of the tricarboxylate transport protein may have a therapeutic effect in chronic inflammation diseases and cancer.[21]

See also

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 Palmieri F (April 2013). "The mitochondrial transporter family SLC25: identification, properties and physiopathology". Molecular Aspects of Medicine. 34 (2–3): 465–84. doi:10.1016/j.mam.2012.05.005. PMID 23266187.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Palmieri F (February 2004). "The mitochondrial transporter family (SLC25): physiological and pathological implications". Pflügers Archiv. 447 (5): 689–709. doi:10.1007/s00424-003-1099-7. PMID 14598172.
  3. 3.0 3.1 3.2 3.3 3.4 Iacobazzi V, Infantino V, Palmieri F (January 2013). "Transcriptional Regulation of the Mitochondrial Citrate and Carnitine/Acylcarnitine Transporters: Two Genes Involved in Fatty Acid Biosynthesis and β-oxidation". Biology. 2 (1): 284–303. doi:10.3390/biology2010284. PMC 4009865. PMID 24832661.
  4. Heisterkamp N, Mulder MP, Langeveld A, ten Hoeve J, Wang Z, Roe BA, Groffen J (September 1995). "Localization of the human mitochondrial citrate transporter protein gene to chromosome 22Q11 in the DiGeorge syndrome critical region". Genomics. 29 (2): 451–6. doi:10.1006/geno.1995.9982. PMID 8666394.
  5. Iacobazzi V, Lauria G, Palmieri F (September 1997). "Organization and sequence of the human gene for the mitochondrial citrate transport protein". DNA Sequence. 7 (3–4): 127–39. doi:10.3109/10425179709034029. PMID 9254007.
  6. "Entrez Gene: SLC25A1 solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1".
  7. 7.0 7.1 7.2 Berg JM, Tymoczko JL, Gatto GJ, Stryer L (2015). Biochemistry. New York: W.H. Freeman & Company. p. 551. ISBN 978-1-4641-2610-9.
  8. Voet D, Voet JG, Pratt CW (2016). Fundamentals of Biochemistry. U.S.A.: Wiley. pp. 687–688. ISBN 978-1-118-91840-1.
  9. Nelson DL, Cox MM (2017). Principles of Biochemistry. New York: W.H. Freeman & Company. pp. 818–819. ISBN 978-1-4641-2611-6.
  10. 10.0 10.1 10.2 10.3 King MS, Kerr M, Crichton PG, Springett R, Kunji ER (January 2016). "Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier". Biochimica et Biophysica Acta. 1857 (1): 14–22. doi:10.1016/j.bbabio.2015.09.013. PMC 4674015. PMID 26453935.
  11. 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 Majd H, King MS, Smith AC, Kunji ER (January 2018). "Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis". Biochimica et Biophysica Acta. 1859 (1): 1–7. doi:10.1016/j.bbabio.2017.10.002. PMID 29031613.
  12. 12.0 12.1 12.2 Robinson AJ, Kunji ER (February 2006). "Mitochondrial carriers in the cytoplasmic state have a common substrate binding site". Proceedings of the National Academy of Sciences of the United States of America. 103 (8): 2617–22. doi:10.1073/pnas.0509994103. PMC 1413793. PMID 16469842.
  13. Robinson AJ, Overy C, Kunji ER (November 2008). "The mechanism of transport by mitochondrial carriers based on analysis of symmetry". Proceedings of the National Academy of Sciences of the United States of America. 105 (46): 17766–71. doi:10.1073/pnas.0809580105. PMC 2582046. PMID 19001266.
  14. Kunji ER, Robinson AJ (September 2006). "The conserved substrate binding site of mitochondrial carriers". Biochimica et Biophysica Acta. 1757 (9–10): 1237–48. doi:10.1016/j.bbabio.2006.03.021. PMID 16759636.
  15. Nota B, Struys EA, Pop A, Jansen EE, Fernandez Ojeda MR, Kanhai WA, Kranendijk M, van Dooren SJ, Bevova MR, Sistermans EA, Nieuwint AW, Barth M, Ben-Omran T, Hoffmann GF, de Lonlay P, McDonald MT, Meberg A, Muntau AC, Nuoffer JM, Parini R, Read MH, Renneberg A, Santer R, Strahleck T, van Schaftingen E, van der Knaap MS, Jakobs C, Salomons GS (April 2013). "Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined D-2- and L-2-hydroxyglutaric aciduria". American Journal of Human Genetics. 92 (4): 627–31. doi:10.1016/j.ajhg.2013.03.009. PMC 3617390. PMID 23561848.
  16. 16.0 16.1 Hoffmann GF, Köckler S (2016). "Cerebral Organic Acid Disorders and Other Disorders of Lysine Catabolism". In Saudubray JM, Baumgartner M, Walter J. Inborn Metabolic Diseases. Germany: Springer. p. 344. ISBN 978-3-662-49771-5.
  17. 17.0 17.1 Cohen I, Staretz-Chacham O, Wormser O, Perez Y, Saada A, Kadir R, Birk OS (February 2018). "A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: Possible phenotypic expansion". American Journal of Medical Genetics. Part A. 176 (2): 330–336. doi:10.1002/ajmg.a.38574. PMID 29226520.
  18. Jiang L, Boufersaoui A, Yang C, Ko B, Rakheja D, Guevara G, Hu Z, DeBerardinis RJ (September 2017). "Quantitative metabolic flux analysis reveals an unconventional pathway of fatty acid synthesis in cancer cells deficient for the mitochondrial citrate transport protein". Metabolic Engineering. 43 (Pt B): 198–207. doi:10.1016/j.ymben.2016.11.004. PMC 5429990. PMID 27856334.
  19. Wan-angkan, P.; et al. (2018). "Combination of Mitochondrial and Plasma Membrane Citrate Transporter Inhibitors Inhibits De Novo Lipogenesis Pathway and Triggers Apoptosis in Hepatocellular Carcinoma Cells". BioMed Research International. 2018: 1–15. doi:10.1155/2018/3683026. PMC 5818947. PMID 29546056.
  20. Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, Palmieri F, Iacobazzi V (September 2011). "The mitochondrial citrate carrier: a new player in inflammation". The Biochemical Journal. 438 (3): 433–6. doi:10.1042/BJ20111275. PMID 21787310.
  21. 21.0 21.1 Infantino V, Iacobazzi V, Menga A, Avantaggiati ML, Palmieri F (November 2014). "A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation". Biochimica et Biophysica Acta. 1839 (11): 1217–1225. doi:10.1016/j.bbagrm.2014.07.013. PMC 4346166. PMID 25072865.
  22. Palmieri EM, Spera I, Menga A, Infantino V, Porcelli V, Iacobazzi V, Pierri CL, Hooper DC, Palmieri F, Castegna A (August 2015). "Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation". Biochimica et Biophysica Acta. 1847 (8): 729–38. doi:10.1016/j.bbabio.2015.04.009. PMID 25917893.

Further reading

  • Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
  • Gong W, Emanuel BS, Collins J, Kim DH, Wang Z, Chen F, Zhang G, Roe B, Budarf ML (June 1996). "A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11". Human Molecular Genetics. 5 (6): 789–800. CiteSeerX 10.1.1.539.9441. doi:10.1093/hmg/5.6.789. PMID 8776594.
  • Goldmuntz E, Wang Z, Roe BA, Budarf ML (April 1996). "Cloning, genomic organization, and chromosomal localization of human citrate transport protein to the DiGeorge/velocardiofacial syndrome minimal critical region". Genomics. 33 (2): 271–6. doi:10.1006/geno.1996.0191. PMID 8660975.
  • Bonofiglio D, Santoro A, Martello E, Vizza D, Rovito D, Cappello AR, Barone I, Giordano C, Panza S, Catalano S, Iacobazzi V, Dolce V, Andò S (June 2013). "Mechanisms of divergent effects of activated peroxisome proliferator-activated receptor-γ on mitochondrial citrate carrier expression in 3T3-L1 fibroblasts and mature adipocytes". Biochimica et Biophysica Acta. 1831 (6): 1027–36. doi:10.1016/j.bbalip.2013.01.014. PMID 23370576.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.