Sandbox john2: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
(130 intermediate revisions by the same user not shown)
Line 1: Line 1:
==In Progress==
==HIV-TB Coinfection==
The best approach to prevent [[measles]] is by active [[immunization]].<ref name="MossGriffin2012">{{cite journal|last1=Moss|first1=William J|last2=Griffin|first2=Diane E|title=Measles|journal=The Lancet|volume=379|issue=9811|year=2012|pages=153–164|issn=01406736|doi=10.1016/S0140-6736(10)62352-5}}</ref> Ever since the introduction of the [[vaccine]] in the developed world, there has been a marked reduction in the [[incidence]] of [[measles]], however, there are still some reported cases of the disease in low-incidence areas, usually imported from other countries by travelers. Because of this potential re-introduction of the virus, it is important to maintain a high level of immunity among the population in order to prevent outbreaks. The measles vaccine is recommended in all infants, as well as in all adolescents and adults of high-risk. When evaluating the need to administer the vaccine, important factors should be attended:
*Age
*Date of administration of first dose, in case of such existence.
*Local measles virus epidemiology, including:
:*Risk of exposure
:*Kind of measles vaccine previously administrated
:*Existence of contraindications for vaccination
:*History of prior measles infection
:*Near-future travel plans


About the type of vaccine, the measles vaccine is an attenuated form, in which is present an attenuated strain of the virus, which distinguishes it from the wild-type strain and at the same time decreases its tropism for lymphocytes.<ref name="MossGriffin2012">{{cite journal|last1=Moss|first1=William J|last2=Griffin|first2=Diane E|title=Measles|journal=The Lancet|volume=379|issue=9811|year=2012|pages=153–164|issn=01406736|doi=10.1016/S0140-6736(10)62352-5}}</ref><ref name="pmid11134304">{{cite journal| author=Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA| title=Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. | journal=J Virol | year= 2001 | volume= 75 | issue= 2 | pages= 910-20 | pmid=11134304 | doi=10.1128/JVI.75.2.910-920.2001 | pmc=PMC113987 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11134304  }} </ref><ref name="pmid17624839">{{cite journal| author=Condack C, Grivel JC, Devaux P, Margolis L, Cattaneo R| title=Measles virus vaccine attenuation: suboptimal infection of lymphatic tissue and tropism alteration. | journal=J Infect Dis | year= 2007 | volume= 196 | issue= 4 | pages= 541-9 | pmid=17624839 | doi=10.1086/519689 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17624839  }} </ref>
Recommendations for the treatment of tuberculosis in [[HIV]]-infected adults:
The recommended treatment of TB disease in HIV-infected adults (when the disease is caused by organisms that are known or presumed to be susceptible to first-line drugs) is a 6-month regimen consisting of:
*For the first 2 months: An initial phase of [[isoniazid]] (INH), a [[rifamycin]], [[pyrazinamide]] (PZA), and [[ethambutol]] (EMB).
*For the last 4 months: A continuation phase of INH and a rifamycin.
*Patients with advanced HIV (CD4 counts < 100/µl) should be treated with daily or three-times-weekly therapy in both the initial and the continuation phases.
*Twice weekly therapy may be considered in patients with less-advanced immunosuppression (CD4 counts ≥ 100/µl).
*Once-weekly INH/rifapentine in the continuation phase should not be used in any HIV-infected patient.


Currently in the US, the available vaccine is the ''Enders-Edmonston strain''. This is a live attenuated vaccine, licensed in 1968. It has two formulations:<ref name="MossGriffin2012">{{cite journal|last1=Moss|first1=William J|last2=Griffin|first2=Diane E|title=Measles|journal=The Lancet|volume=379|issue=9811|year=2012|pages=153–164|issn=01406736|doi=10.1016/S0140-6736(10)62352-5}}</ref><ref name="LeuridanHens2010">{{cite journal|last1=Leuridan|first1=E.|last2=Hens|first2=N.|last3=Hutse|first3=V.|last4=Ieven|first4=M.|last5=Aerts|first5=M.|last6=Van Damme|first6=P.|title=Early waning of maternal measles antibodies in era of measles elimination: longitudinal study|journal=BMJ|volume=340|issue=may18 2|year=2010|pages=c1626–c1626|issn=0959-8138|doi=10.1136/bmj.c1626}}</ref>
Recommendations for the treatment of tuberculosis in [[HIV]]-infected adults are, with a few exceptions, the same as those for HIV-uninfected adults. The [[INH]]--[[rifapentine]] once weekly continuation phase is contraindicated in HIV-infected patients because of an unacceptably high rate of relapse, frequently with organisms that have acquired resistance to [[rifamycin]]s. The development of acquired [[rifampin]] [[drug resistance|resistance]] has also been noted among HIV-infected patients with advanced [[immunosuppression]] treated with twice weekly rifampin- or [[rifabutin]]-based regimens. Consequently, patients with [[CD4]]+ cell counts <100/µl should receive daily or three times weekly treatment. DOT and other adherence-promoting strategies are especially important for patients with HIV-related tuberculosis.  


*MMR or Measles-Mumps-Rubella vaccine
Management of HIV-related tuberculosis is complex and requires expertise in the management of both HIV disease and tuberculosis. Because HIV-infected patients are often taking numerous medications, some of which interact with antituberculosis medications, it is strongly encouraged that experts in the treatment of HIV-related tuberculosis be consulted. A particular concern is the interaction of [[rifamycin]]s with [[antiretroviral agent]]s and other antiinfective drugs. [[Rifampin]] can be used for the treatment of tuberculosis with certain combinations of antiretroviral agents. [[Rifabutin]], which has fewer problematic drug interactions, may also be used in place of rifampin and appears to be equally effective although the doses of rifabutin and antiretroviral agents may require adjustment. As new antiretroviral agents and more pharmacokinetic data become available, these recommendations are likely to be modified.  
*Quadrivalent MMRV vaccine with measles, mumps, rubella, and varicella.


According to the CDC, every child should get 2 doses of the MMR vaccine:
On occasion, patients with HIV-related tuberculosis may experience a temporary exacerbation of symptoms, signs, or radiographic manifestations of tuberculosis while receiving antituberculosis treatment. This clinical or radiographic worsening (paradoxical reaction) occurs in HIV-infected patients with active tuberculosis and is thought to be the result of immune reconstitution as a consequence of effective [[antiretroviral therapy]]. Symptoms and signs may include high [[fever]]s, [[lymphadenopathy]], expanding [[central nervous system]] lesions, and worsening of [[chest radiographic]] findings. The diagnosis of a paradoxical reaction should be made only after a thorough evaluation has excluded other [[etiologies]], particularly tuberculosis treatment failure. [[Nonsteroidal antiinflammatory agent]]s may be useful for symptomatic relief. For severe paradoxical reactions, [[prednisone]] (1--2 mg/kg per day for 1--2 weeks, then in gradually decreasing doses) may be used, although there are no data from controlled trials to support this approach.
*The first dose should be between the 12th and the 15th month of life
*The second dose can be given at any age, as long as there are at least 28 days after the administration of the first dose. However, common practice is to administer the second dose between the 4th and the 6th year of life.
It is important to notice that for any international travel, children between 6 and 11 months of age should have at least one dose of the MMR vaccine. If the child has more than one year of age, then he/she should have the two doses of the MMR vaccine, interspaced at least by 28 days.
 
 
 
;Children should get 2 doses of MMR vaccine:
* The first dose at 12-15 months of age
* The second dose at 4-6 years of age
These are the recommended ages. But children can get the second dose at any age, as long as it is at least 28 days after the first dose.
 
''' Adults DO NOT need the measles, mumps, rubella vaccine (MMR) if:'''
* Blood tests show immunity to measles, mumps, and rubella.
* You are a man born before 1957.
* You are a woman born before 1957 who is sure she is not having more children, has already had rubella vaccine, or has had a positive rubella test.
* You already had two doses of MMR or one dose of MMR plus a second dose of measles vaccine.
* You already had one dose of MMR and are not at high risk of measles exposure.
 
'''Adults SHOULD get the measles vaccine if you are not among the categories listed above, and:'''
*  You are a college student, trade school student, or other student beyond high school.
* You work in a hospital or other medical facility*.
* You travel internationally, or are a passenger on a cruise ship.
* You are a woman of childbearing age.
 
==Random notes==
 
 
 
 
------------------
 
CS Ultrasound: [[Echocardiography]] is an important imaging modality in the evaluation of the patient with cardiogenic shock. In cardiogenic shock complicating acute-[[MI]], findings such as poor wall motion may be identified. Mechanical complications such as [[papillary muscle rupture]], pseudoaneurysm, and a [[ventricular septal defect]] may also be visualized.  [[Valvular heart disease]] such as [[aortic stenosis]], [[aortic insufficiency]] and [[mitral stenosis]] can also be assessed. Dynamic outflow obstruction such as [[HOCM]] can also be indentified and quantified.  The magnitude of left ventricular dysfunction in patients with cardiomyopathy can be evaluated. It allows the clinician to distinguish cardiogenic shock from [[septic shock]] and [[neurogenic shock]]. In [[septic shock]], a hypercontractile ventricle may be present.
 
 
*Differential diagnosis - "Cardiogenic shock may be difficult, at least initially, to distinguish from hypovolemic shock. Both forms of shock are associated with decreased cardiac output and compensatory upregulation of the sympathetic response. Both entities also respond initially to fluid resuscitation. The syndrome of cardiogenic shock is defined as the inability of the heart to deliver sufficient blood flow to meet metabolic demands. The etiology of cardiogenic shock may be intrinsic or extrinsic. In Case 1 , the development of class IV shock may be due to hemorrhage, such as an aortic injury, or may be cardiogenic, such as a myocardial contusion from blunt injury to the chest. Echocardiography would evaluate the possibility of intrinsic or extrinsic myocardial dysfunction. Intrinsic causes of cardiogenic shock include myocardial infarction, valvular disease, contusion from thoracic trauma, and arrhythmias. For patients with myocardial infarction, cardiogenic shock is associated with loss of greater than 40% of left ventricular myocardium. The normal physiologic compensation for cardiogenic shock actually results in progressively greater myocardial energy demand that, without intervention, results in the death of the patient . A decrease in blood pressure activates an adrenergic response that leads to increased sympathetic tone, stimulates renin-angiotensinaldosterone feedback, and potentiates antidiuretic hormone secretion. These mechanisms serve to increase vasomotor tone and retain salt and water. The resultant increase in systemic vascular resistance and in left ventricular end-diastolic pressure leads to increased myocardial oxygen demand in the face of decreased oxygen delivery. This, in turn, results in worsening left ventricular function, a perceived reduction in circulating blood volume, and repetition of the cycle."
 
===Cardiogenic shock and Inflammatory Mediators===
 
[[Image:Cardiogenic_shock.JPG|center|500px]]
 
===The Pathophysiologic "Spiral" of Cardiogenic shock===
Among patients with acute MI, there is often a downward spiral of hypoperfusion leading to further ischemia which leads to a further reduction in cardiac output and further hypoperfusion.  The [[lactic acidosis]] that develops as a result of poor systemic perfusion can further reduce cardiac contractility. Reduced cardiac output leads to activation of the sympathetic nervous system, and the ensuing [[tachycardia]] that develops further exacerbates the myocardial ischemia. The increased left ventricular end diastolic pressures is associated with a rise in wall stress which results in further myocardial ischemia. [[Hypotension]] reduces epicardial perfusion pressure which in turn further increases myocardial ischemia.
 
Patients with cardiogenic shock in the setting of [[STEMI]] more often have multivessel disease, and myocardial ischemia may be present in multiple territories.  It is for this reason that multivessel angioplasty may be of benefit in the patient with cardiogenic shock.
 
The multifactorial nature of cardiogenic shock can also be operative in the patient with critical [[aortic stenosis]] who has "spiraled": There is impairment of left ventricular outflow, with a drop in [[cardiac output]] there is greater [[subendocardial]] ischemia and poorer flow in the coronary arteries, this leads to further [[left ventricular systolic dysfunction]], given the subendocardial ischemia, the left ventricle develops [[diastolic dysfunction]] and becomes harder to fill. Inadvertent administration of [[vasodilator]]s and [[venodilator]]s may further reduce cardiac output and accelerate or trigger such a spiral.
 
===Pathophysiologic Mechanisms to Compensate for Cardiogenic shock===
[[Cardiac output]] is the product of [[stroke volume]] and heart rate. In order to compensate for a reduction in stroke volume, there is a rise in the heart rate in patients with cardiogenic shock. As a result of the reduction in [[cardiac output]], peripheral tissues extract more oxygen from the limited blood that does flow to them, and this leaves the blood deoxygenated when it returns to the right heart resulting in a fall in the mixed venous oxygen saturation.
 
===Pathophysiology of Multiorgan Failure===
The poor perfusion of organs results in [[hypoxia]] and [[metabolic acidosis]].  Inadequate perfusion to meet the metabolic demands of the brain, kidneys and heart leads to multiorgan failure.
 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
 
 
Differential Diagnosis
 
 
{| style="border: 2px solid #A8A8A8; font-size: 70%;" align="center"
|+ <SMALL>''Classification of shock based on hemodynamic parameters.'' (CO, cardiac output; CVP; central venous pressure; PAD, pulmonary artery diastolic pressure; PAS, pulmonary artery systolic pressure; RVD, right ventricular diastolic pressure; RVS, right ventricular systolic pressure; SVO2, systemic venous oxygen saturation; SVR, systemic vascular resistance.)<ref name="isbn0-683-06754-0">{{Cite book  | last1 = Parrillo | first1 = Joseph E. | last2 = Ayres | first2 = Stephen M. | title = Major issues in critical care medicine | date = 1984 | publisher = William  Wilkins | location = Baltimore | isbn = 0-683-06754-0 | pages =  }}</ref><ref name="isbn9781405179263">{{cite book | author = Judith S. Hochman, E. Magnus Ohman | authorlink = | editor = | others = | title = Cardiogenic Shock | edition = | language = | publisher = Wiley-Blackwell | location = | year = 2009 | origyear = | pages = | quote = | isbn = 9781405179263 | oclc = | doi = | url = | accessdate = }}</ref></SMALL>
| align="center" style="background: #A8A8A8; width: 100px;"| '''Type of Shock'''
| align="center" style="background: #A8A8A8; width: 50px;" | '''Etiology'''
| align="center" style="background: #A8A8A8; width: 50px;" | '''CO'''
| align="center" style="background: #A8A8A8; width: 50px;" | '''SVR'''
| align="center" style="background: #A8A8A8; width: 50px;" | '''PCWP'''
| align="center" style="background: #A8A8A8; width: 50px;" | '''CVP'''
| align="center" style="background: #A8A8A8; width: 50px;" | '''SVO2'''
| align="center" style="background: #A8A8A8; width: 50px;" | '''RVS'''
| align="center" style="background: #A8A8A8; width: 50px;" | '''RVD'''
| align="center" style="background: #A8A8A8; width: 50px;" | '''PAS'''
| align="center" style="background: #A8A8A8; width: 50px;" | '''PAD'''
|-
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC; width: 80px;" align=center rowspan=4 | '''Cardiogenic'''
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC; width: 20%;" | '''[[Ventricular septal defect|Acute Ventricular Septal Defect]]'''
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑ — ↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↑
|-
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" | '''[[Mitral regurgitation|Acute Mitral Regurgitation]]'''
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑ — ↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑
|-
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" | '''[[Myocardium|Myocardial Dysfunction]]'''
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑
|-
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" | '''[[RV infarction|Right Ventricular Infarction]]'''
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓ — ↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓ — ↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓ — ↑
|-
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" rowspan=2 align=center | '''Obstructive'''
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" | '''[[Pulmonary embolism|Pulmonary Embolism]]'''
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |N  — ↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↑↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓ — ↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓ — ↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓ — ↑
|-
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" |'''[[Cardiac tamponade|Cardiac Tamponade]]'''
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓ — ↓↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↑↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↑↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |N — ↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |N — ↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |N — ↑
|-
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" rowspan=2 align=center | '''Distributive'''
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" | '''[[Septic shock|Septic Shock]]'''
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓ — ↓↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑ — ↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓
|-
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" | '''[[Anaphylactic shock|Anaphylactic Shock]]'''
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓ — ↓↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↑ — ↑↑
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓
| style="font-size: 90%; padding: 0 5px; background: #DCDCDC;" align=center |↓
|-
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" rowspan=1 align=center | '''Hypovolemic'''
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" | '''[[Volume depletion|Volume Depletion]]'''
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↑
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |N — ↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓
| style="font-size: 90%; padding: 0 5px; background: #F5F5F5;" align=center |↓
|}
 
==References==
{{Reflist|2}}

Latest revision as of 16:12, 17 September 2014

HIV-TB Coinfection

Recommendations for the treatment of tuberculosis in HIV-infected adults: The recommended treatment of TB disease in HIV-infected adults (when the disease is caused by organisms that are known or presumed to be susceptible to first-line drugs) is a 6-month regimen consisting of:

  • For the first 2 months: An initial phase of isoniazid (INH), a rifamycin, pyrazinamide (PZA), and ethambutol (EMB).
  • For the last 4 months: A continuation phase of INH and a rifamycin.
  • Patients with advanced HIV (CD4 counts < 100/µl) should be treated with daily or three-times-weekly therapy in both the initial and the continuation phases.
  • Twice weekly therapy may be considered in patients with less-advanced immunosuppression (CD4 counts ≥ 100/µl).
  • Once-weekly INH/rifapentine in the continuation phase should not be used in any HIV-infected patient.

Recommendations for the treatment of tuberculosis in HIV-infected adults are, with a few exceptions, the same as those for HIV-uninfected adults. The INH--rifapentine once weekly continuation phase is contraindicated in HIV-infected patients because of an unacceptably high rate of relapse, frequently with organisms that have acquired resistance to rifamycins. The development of acquired rifampin resistance has also been noted among HIV-infected patients with advanced immunosuppression treated with twice weekly rifampin- or rifabutin-based regimens. Consequently, patients with CD4+ cell counts <100/µl should receive daily or three times weekly treatment. DOT and other adherence-promoting strategies are especially important for patients with HIV-related tuberculosis.

Management of HIV-related tuberculosis is complex and requires expertise in the management of both HIV disease and tuberculosis. Because HIV-infected patients are often taking numerous medications, some of which interact with antituberculosis medications, it is strongly encouraged that experts in the treatment of HIV-related tuberculosis be consulted. A particular concern is the interaction of rifamycins with antiretroviral agents and other antiinfective drugs. Rifampin can be used for the treatment of tuberculosis with certain combinations of antiretroviral agents. Rifabutin, which has fewer problematic drug interactions, may also be used in place of rifampin and appears to be equally effective although the doses of rifabutin and antiretroviral agents may require adjustment. As new antiretroviral agents and more pharmacokinetic data become available, these recommendations are likely to be modified.

On occasion, patients with HIV-related tuberculosis may experience a temporary exacerbation of symptoms, signs, or radiographic manifestations of tuberculosis while receiving antituberculosis treatment. This clinical or radiographic worsening (paradoxical reaction) occurs in HIV-infected patients with active tuberculosis and is thought to be the result of immune reconstitution as a consequence of effective antiretroviral therapy. Symptoms and signs may include high fevers, lymphadenopathy, expanding central nervous system lesions, and worsening of chest radiographic findings. The diagnosis of a paradoxical reaction should be made only after a thorough evaluation has excluded other etiologies, particularly tuberculosis treatment failure. Nonsteroidal antiinflammatory agents may be useful for symptomatic relief. For severe paradoxical reactions, prednisone (1--2 mg/kg per day for 1--2 weeks, then in gradually decreasing doses) may be used, although there are no data from controlled trials to support this approach.