Systemic acquired resistance

Jump to: navigation, search

In plants, systemic acquired resistance (SAR) is a "whole-plant" resistance response that occurs following an earlier localized exposure to a pathogen. SAR is analogous to the innate immune system found in animals, and there is evidence that SAR in plants and innate immunity in animals may be evolutionarily conserved. SAR is important for plants to resist disease, as well as to recover from disease once formed. SAR can be induced by a wide range of pathogens, especially (but not only) those that cause tissue necrosis, and the resistance observed following induction of SAR is effective against a wide range of pathogens, which is why SAR resistance is sometimes called "broad spectrum." SAR is associated with the induction of a wide range of genes (so called PR or "pathogenesis-related" genes), and the activation of SAR requires the accumulation of endogenous salicylic acid (SA). The pathogen-induced SA signal activates a molecular signal transduction pathway that is identified by a gene called NIM1, NPR1 or SAI1 (three names for the same gene) in the model genetic system Arabidopsis thaliana. SAR has been observed in a wide range of flowering plants, including dicotyledon and monocotyledon species.

References

  • Ryals et al., (1996) Systemic Acquired Resistance. The Plant Cell 8: 1809-1819.

[1]

See also

Template:Botany-stub sk:Systémová získaná rezistencia


Linked-in.jpg