Jump to: navigation, search

A sensor is a device which measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument. For example, a mercury thermometer converts the measured temperature into expansion and contraction of a liquid which can be read on a calibrated glass tube. A thermocouple converts temperature to an output voltage which can be read by a voltmeter. For accuracy, all sensors need to be calibrated against known standards.

Sensors are used in everyday objects such as touch-sensitive elevator buttons and lamps which dim or brighten by touching the base. There are also innumerable applications for sensors of which most people are never aware. Applications include automobiles, machines, aerospace, medicine, industry, and robotics.

A sensor's sensitivity indicates how much the sensor's output changes when the measured quantity changes. For instance, if the mercury in a thermometer moves 1cm when the temperature changes by 1°, the sensitivity is 1cm/1°. Sensors that measure very small changes must have very high sensitivities.

Technological progress allows more and more sensors to be manufactured on a microscopic scale as microsensors using MEMS technology. In most cases, a microsensor reaches a significantly higher speed and sensitivity compared with macroscopic approaches. See also MEMS sensor generations.


Because sensors are a type of transducer, they change one form of energy into another. For this reason, sensors can be classified according to the type of energy transfer that they detect.





Optical radiation

  • light time-of-flight. Used in modern surveying equipment, a short pulse of light is emitted and returned by a retroreflector. The return time of the pulse is proportional to the distance and is related to atmospheric density in a predictable way - see LIDAR.
  • infra-red sensor, especially used as occupancy sensor for lighting and environmental controls.
  • proximity sensor- A type of distance sensor but less sophisticated. Only detects a specific proximity. May be optical - combination of a photocell and LED or laser. Applications in cell phones, paper detector in photocopiers, auto power standby/shutdown mode in notebooks and other devices. May employ a magnet and a Hall effect device.
  • scanning laser- A narrow beam of laser light is scanned over the scene by a mirror. A photocell sensor located at an offset responds when the beam is reflected from an object to the sensor, whence the distance is calculated by triangulation.
  • focus. A large aperture lens may be focused by a servo system. The distance to an in-focus scene element may be determined by the lens setting.
  • binocular. Two images gathered on a known baseline are brought into coincidence by a system of mirrors and prisms. The adjustment is used to determine distance. Used in some cameras (called range-finder cameras) and on a larger scale in early battleship range-finders
  • interferometry. Interference fringes between transmitted and reflected lightwaves produced by a coherent source such as a laser are counted and the distance is calculated. Capable of extremely high precision.
  • short path optical interception - detection device consists of a light-emitting diode illuminating a phototransistor, with the end position of a mechanical device detected by a moving flag intercepting the optical path, useful for determining an initial position for mechanisms driven by stepper motors.

Ionising radiation


  • acoustic : uses ultrasound time-of-flight echo return. Used in mid 20th century polaroid cameras and applied also to robotics. Even older systems like Fathometers (and fish finders) and other 'Tactical Active' Sonar (Sound Navigation And Ranging) systems in naval applications which mostly use audible sound frequencies.
  • sound sensors : microphones, hydrophones, seismometers.

Other types

Non Initialized systems

  • Gray code strip or wheel- a number of photodetectors can sense a pattern, creating a binary number. The gray code is a mutated pattern that ensures that only one bit of information changes with each measured step, thus avoiding ambiguities.

Initialized systems

These require starting from a known distance and accumulate incremental changes in measurements.

  • Quadrature wheel- A disk-shaped optical mask is driven by a gear train. Two photocells detecting light passing through the mask can determine a partial revolution of the mask and the direction of that rotation.
  • whisker sensor- A type of touch sensor and proximity sensor.

Classification of measurement errors

A good sensor obeys the following rules:

  1. the sensor should be sensitive to the measured property
  2. the sensor should be insensitive to any other property
  3. the sensor should not influence the measured property

Ideal sensors are designed to be linear. The output signal of such a sensor is linearly proportional to the value of the measured property. The sensitivity is then defined as the ratio between output signal and measured property. For example, if a sensor measures temperature and has a voltage output, the sensitivity is a constant with the unit [V/K]; this sensor is linear because the ratio is constant at all points of measurement.

If the sensor is not ideal, several types of deviations can be observed:

  • The sensitivity may in practice differ from the value specified. This is called a sensitivity error, but the sensor is still linear.
  • Since the range of the output signal is always limited, the output signal will eventually reach a minimum or maximum when the measured property exceeds the limits. The full scale range defines the maximum and minimum values of the measured property.
  • If the output signal is not zero when the measured property is zero, the sensor has an offset or bias. This is defined as the output of the sensor at zero input.
  • If the sensitivity is not constant over the range of the sensor, this is called nonlinearity. Usually this is defined by the amount the output differs from ideal behavior over the full range of the sensor, often noted as a percentage of the full range.
  • If the deviation is caused by a rapid change of the measured property over time, there is a dynamic error. Often, this behaviour is described with a bode plot showing sensitivity error and phase shift as function of the frequency of a periodic input signal.
  • If the output signal slowly changes independent of the measured property, this is defined as drift.
  • Long term drift usually indicates a slow degradation of sensor properties over a long period of time.
  • Noise is a random deviation of the signal that varies in time.
  • Hysteresis is an error caused by when the measured property reverses direction, but there is some finite lag in time for the sensor to respond, creating a different offset error in one direction than in the other.
  • If the sensor has a digital output, the output is essentially an approximation of the measured property. The approximation error is also called digitization error.
  • If the signal is monitored digitally, limitation of the sampling frequency also can cause a dynamic error.
  • The sensor may to some extent be sensitive to properties other than the property being measured. For example, most sensors are influenced by the temperature of their environment.

All these deviations can be classified as systematic errors or random errors. Systematic errors can sometimes be compensated for by means of some kind of calibration strategy. Noise is a random error that can be reduced by signal processing, such as filtering, usually at the expense of the dynamic behaviour of the sensor.


The resolution of a sensor is the smallest change it can detect in the quantity that it is measuring. Often in a digital display, the least significant digit will fluctuate, indicating that changes of that magnitude are only just resolved. The resolution is related to the precision with which the measurement is made. For example, a scanning probe (a fine tip near a surface collects an electron tunnelling current) can resolve atoms and molecules.

Biological sensors

All living organisms contain biological sensors with functions similar to those of the mechanical devices described. Most of these are specialized cells that are sensitive to:

Artificial sensors that mimic biological sensors by using a biological sensitive component, are called biosensors.

The human senses are examples of specialized neuronal sensors. See Sense.

Geodetic sensors

Geodetic measuring devices measure georeferenced displacements or movements in one, two or three dimensions. It includes the use of instruments such as total stations, levels and global navigation satellite system receivers.

See also

External links

Look up Sensor in
Wiktionary, the free dictionary.

ca:Sensor cs:Senzor da:Sensor de:Sensor et:Andurfa:حسگرko:센서 id:Sensor it:Sensore he:חיישן lv:Sensors nl:Sensorsk:Snímač su:Sénsor fi:Anturi sv:Sensoruk:Давач ur:مِکشاف

Navigation WikiDoc | WikiPatient | Up To Date Pages | Recently Edited Pages | Recently Added Pictures

Table of Contents In Alphabetical Order | By Individual Diseases | Signs and Symptoms | Physical Examination | Lab Tests | Drugs

Editor Tools Become an Editor | Editors Help Menu | Create a Page | Edit a Page | Upload a Picture or File | Printable version | Permanent link | Maintain Pages | What Pages Link Here
There is no pharmaceutical or device industry support for this site and we need your viewer supported Donations | Editorial Board | Governance | Licensing | Disclaimers | Avoid Plagiarism | Policies