Ordination (statistics)

Jump to: navigation, search

In multivariate analysis, ordination is a method complementary to data clustering, and used mainly in exploratory data analysis (rather than in hypothesis testing). Ordination orders objects that are characterized by values on multiple variables (i.e multivariate objects) so that similar objects are near each other and dissimilar objects are further from each other. These relationships between the objects, on each of several axes (one for each variable), are then characterized numerically and/or graphically. Many ordination techniques exist, including principal components analysis (PCA), non-metric multidimensional scaling (NMDS), correspondence analysis and its derivatives (CA, DCA, CCA), Bray-Curtis ordination, and redundancy analysis (RA), among others.

Uses

See also

References

  • Gauch, H. G., Jr. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge.
  • Jongman et al, 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge.
  • Birks, H.J.B, 1998. An Annotated Bibliography Of Canonical Correspondence Analysis And Related Constrained Ordination Methods 1986-1996. Botanical Institute, University of Bergen. World Wide Web: http://www.bio.umontreal.ca/Casgrain/cca_bib/index.html

External links

  1. General
  2. Specific Techniques
  3. Software

Navigation WikiDoc | WikiPatient | Up To Date Pages | Recently Edited Pages | Recently Added Pictures

Table of Contents In Alphabetical Order | By Individual Diseases | Signs and Symptoms | Physical Examination | Lab Tests | Drugs

Editor Tools Become an Editor | Editors Help Menu | Create a Page | Edit a Page | Upload a Picture or File | Printable version | Permanent link | Maintain Pages | What Pages Link Here
There is no pharmaceutical or device industry support for this site and we need your viewer supported Donations | Editorial Board | Governance | Licensing | Disclaimers | Avoid Plagiarism | Policies
Linked-in.jpg