Genetically modified food

Jump to navigation Jump to search
Kenyans examining insect-resistant transgenic Bt corn.

Genetically Modified (GM) foods are foodstuffs produced from genetically modified organisms (GMO) that have had their genome altered through genetic engineering. The process of producing a GMO is to take the DNA from one organism, modify it in a laboratory, and then insert it into another organism's genome to produce new and useful traits or phenotypes. Typically, this is done using the DNA from certain types of bacteria. GM Foods have been available since the 1990s. The most common modified foods are derived from plants: soybean, corn, canola and cotton seed oil and wheat.[1]

Controversies surrounding GM foods and crops commonly focus on human and environmental safety, labeling and consumer choice, intellectual property rights, ethics, food security, poverty reduction, and environmental conservation. See also: GM food controversy

The second commercially grown genetically modified food crop was the Flavr Savr tomato, which was made more resistant to rotting by Californian company Calgene.[2] Calgene was allowed to release tomato into the market in 1994 without any special labeling.[3] It was welcomed by consumers that purchased the fruit at two to five times the price of regular tomatoes. However, production problems[2] and competition from a conventionally bred, longer shelf-life variety prevented the product from becoming profitable. A variant of the Flavr Savr was used by Zeneca to produce tomato paste which was sold in Europe during the summer of 1996.[4] The labeling and pricing were designed as a marketing experiment, which proved, at the time, that European consumers would accept genetically engineered foods.

The attitude toward GM foods would be drastically changed after outbreaks of Mad Cow Disease weakened consumer trust in government regulators, and protesters rallied against the introduction of Monsanto's "Roundup-Ready" soybeans.[citation needed] The next GM crops included insect-protected cotton[5][6] and herbicide-tolerant soybeans[7] both of which were commercially released in 1996. GM crops have been widely adopted in the United States. They have also been extensively planted in several other countries (Argentina, Brazil, South Africa, India, and China) where agriculture is a major part of the total economy. Other GM crops include insect-protected maize and herbicide-tolerant maize, cotton, and rapeseed varieties.

Abundance of GM crops

Between 1996 and 2005, the total surface area of land cultivated with GMOs had increased by a factor of 50, from 17,000 km² (4.2 million acres) to 900,000 km² (222 million acres), of which 55 percent were in the United States.[citation needed]

Although most GM crops are grown in North America, in recent years there has been rapid growth in the area sown in developing countries. For instance in 2005 the largest increase in crop area planted to GM crops (soybeans) was in Brazil (94,000 km² in 2005 versus 50,000 km² in 2004.)[8] There has also been rapid and continuing expansion of GM cotton varieties in India since 2002. (Cotton is a major source of vegetable cooking oil and animal feed.) It is predicted that in 2006/7 32,000 km² of GM cotton will be harvested in India (up more than 100 percent from the previous season). Indian national average cotton yields of GM cotton were seven times lower in 2002, because the parental cotton plant used in the genetic engineered was not well suited to the climate of India and failed. The publicity given to transgenic trait Bt insect resistance has encouraged the adoption of better performing hybrid cotton varieties, and the Bt trait has substantially reduced losses to insect predation. Economic and environmental benefits of GM cotton in India to the individual farmer have been documented.[9][10]

In 2003, countries that grew 99 percent of the global transgenic crops were the United States (63 percent), Argentina (21 percent), Canada (6 percent), Brazil (4 percent), China (4 percent), and South Africa (1 percent).[11] The Grocery Manufacturers of America estimate that 75 percent of all processed foods in the U.S. contain a GM ingredient[citation needed] . In particular, Bt corn, which produces the pesticide within the plant itself is widely grown, as are soybeans genetically designed to tolerate glyphosate herbicides. These constitute "input-traits" are aimed to financially benefit the producers, have indirect environmental benefits and marginal cost benefits to consumers.

In the US, by 2006 89% of the planted area of soybeans, 83 percent of cotton, and 61 percent maize was genetically modified varieties. Genetically modified soybeans carried herbicide tolerant traits only, but maize and cotton carried both herbicide tolerance and insect protection traits (the latter largely the Bacillus thuringiensus Bt insecticidal protein). In the period 2002 to 2006, there were significant increases in the area planted to Bt protected cotton and maize, and herbicide tolerant maize also increased in sown area.[12]

Future developments

Future envisaged applications of GMOs are diverse and include drugs in food, bananas that produce human vaccines against infectious diseases such as Hepatitis B, metabolically engineered fish that mature more quickly, fruit and nut trees that yield years earlier, and plants that produce new plastics with unique properties. While their practicality or efficacy in commercial production has yet to be fully tested, the next decade may see exponential increases in GM product development as researchers gain increasing access to genomic resources that are applicable to organisms beyond the scope of individual projects. Safety testing of these products will also at the same time be necessary to ensure that the perceived benefits will indeed outweigh the perceived and hidden costs of development.

Crops under development

The following GM crops are in development

In the USA regulation of a genetically modified food is determined by the objective characteristics of the food and the intended use of the food, irrespective of the way it was developed. FDA policy states that a formal pre-market review by the FDA is to be taken when the objective characteristics of any substance added to the food raises safety issues.[22]

Prior to marketing a new GM food product, manufacturers are required to submit documentation to the FDA to demonstrate its safety and then await approval before selling it to consumers.[23]

The context for assessing safety of novel foods is the fact that existing foods often contain toxic components but are still able to be consumed safely. For instance, potatoes and tomatoes can contain toxic levels of solanine and alpha-tomatine alkaloids respectively,[24] and this situation is recognised in the concept of "Substantial Equivalence" that was developed by the OECD in 1993 as a criterion for identifying whether a novel food is at least as safe as the equivalent existing food. The US FDA takes a safety assessment approach that is consistent with this OECD concept in their regulation of novel foods (including those made by recombinant DNA methods). This policy is outlined in an FDA statement.[25]

Critics of GM food believe this regulatory model fails to sufficiently protect consumers and claim that the FDA is subject to pressure and influence by industry. One concern voiced is that a novel crop may have unintended changes created during the insertion of new genetic material. On the other hand, plant scientists, backed by results of modern comprehensive profiling of crop composition, point out that crops modified using GM techniques are less likely to have unintended changes than are conventionally bred crops.[26][27]

Intellectual property

Monsanto Canada Inc. v. Schmeiser

Enforcement of Patents on genetically modified plants is often contentious, especially because of the occurrence of Gene flow. In 1998, 95-98 percent of about 10 km² planted with canola by Canadian farmer Percy Schmeiser were found to contain Monsanto's patented Roundup Ready gene although Schmeiser had never purchased seed from Monsanto.[28] The initial source of the plants was undetermined, and could have been through either gene flow or intentional theft. However, the overwhelming predominance of the trait implied that Schmeiser must have intentionally selected for it. The court determined that Schmeiser had saved seed from areas on and adjacent to his property where Roundup had been sprayed, such as ditches and near power poles.[29]

Although unable to prove direct theft, Monsanto sued Schmeiser for piracy since he knowingly grew Roundup Ready plants without paying royalties(Ibid). The case made it to the Canadian Supreme Court, which in 2004 ruled 5 to 4 in Monsanto’s favor.[28][29] The dissenting judges focused primarily on the fact that Monsanto's patents covered only the gene itself and glyphosate resistant cells, and failed to cover transgenic plants in their entirety.

In response to criticism, Monsanto Canada's director of public affairs stated that "It is not, nor has it ever been Monsanto Canada's policy to enforce its patent on Roundup Ready crops when they are present on a farmer's field by accident...Only when there has been a knowing and deliberate violation of its patent rights will Monsanto act."[30] Currently Percy Schmeiser spends a large amount of his time traveling and speaking about how Monsanto ruined his career as a farmer. He also talks about the possible harms of genetically modification and why others in addition to himself should be protesting it.

Coexistence and traceability

In many countries, and especially in the European Union, consumers demand the choice between foods of genetically modified, conventional or organic origins. This requires a labelling system as well as the reliable separation of GM and non-GM organisms at production level and throughout the whole processing chain.

Research has demonstrated, that coexistence of GM crops can be realised by several agricultural measures, such as isolation distances or biological containment strategies.

For traceability, the OECD has introduced a "unique identifier" which is given to any GMO when it is approved. This unique identifier must be forwarded at every stage of processing.

Many countries have established labelling regulations and guidelines on coexistence and traceability. Research projects such as Co-Extra, SIGMEA and Transcontainer are aimed at investigating improved methods for ensuring coexistence and providing stakeholders the tools required for the implementation of coexistence and traceability.

Benefits and Controversies

See GM food controversy.

Policy around the world

Some argue that there is more than enough food in the world and that the hunger crisis is caused by problems in food distribution and politics, not production, so people should not be offered food that may carry some degree of risk.[citation needed]

Others oppose genetic engineering on the grounds that genetic modifications might have unforeseen consequences, both in the initially modified organisms and their environments. For example, certain strains of maize have been developed that are toxic to plant eating insects (see Bt corn). It has been alleged those strains cross-pollinated with other varieties of wild and domestic maize and passed on these genes with a putative impact on Maize biodiversity.[31] Subsequent to the publication of these results, several scientists pointed out that the conclusions were based on experiments with design flaws. It is well known that the results from the Polymerase Chain Reaction method of analysing DNA can often be confounded by sample contamination and experimental artifacts. Appropriate controls can be included in experiments to eliminate these as a possible explanation of the results - however these controls were not included in the methods used by Quist and Chapela.[32] After this criticism Nature, the scientific journal where this data was originally published concluded that "the evidence available is not sufficient to justify the publication of the original paper".[33] More recent attempts to replicate the original studies have concluded that genetically modified corn is absent from southern Mexico in 2003 and 2004 [9] Also in dispute is the impact on biodiversity of the introgression of transgenes into wild populations [10]. Unless a transgene offers a massive selective advantage in a wild population, a transgene that enters such a population will be maintained at a low gene frequency. In such situations it can be argued that such an introgression actually increases biodiversity rather than lowers it.

Activists opposed to genetic engineering say that with current recombinant technology there is no way to ensure that genetically modified organisms will remain under control, and the use of this technology outside secure laboratory environments carries potentially unacceptable risks to both farmed and wild ecosystems.

Potential impact on biodiversity may occur if herbicide-tolerant crops are sprayed with herbicide to the extent that no wild plants ('weeds') are able to survive. Plants toxic to insects may mean insect-free crops. This could result in declines in other wildlife (e.g. birds) which feed on weed seeds and/or insects for food resources. The recent (2003) farm scale studies in the UK found this to be the case with GM sugar beet and GM rapeseed, but not with GM maize (though in the last instance, the non-GM comparison maize crop had also been treated with environmentally-damaging pesticides subsequently (2004) withdrawn from use in the EU).

Although some scientists have claimed that selective breeding is a form of genetic engineering,[34] (e.g., maize was modified from teosinte, dogs have evolved with human intervention over the course of tens of thousands of years from wolves), others assert that modern transgenesis-based genetic engineering is capable of delivering changes faster than, and sometimes of different types from, traditional breeding methods.[35]

Proponents of current genetic techniques as applied to food plants cite the benefits that the technology can have, for example, in the harsh agricultural conditions of Africa. They say that with modifications, existing crops would be able to thrive under the relatively hostile conditions providing much needed food to their people. Proponents also cite golden rice and golden rice 2, genetically engineered rice varieties (still under development) that contain elevated vitamin A levels. There is hope that this rice may alleviate vitamin A deficiency that contributes to the death of millions and permanent blindness of 500,000 annually.[citation needed]

Proponents say that genetically-engineered crops are not significantly different from those modified by nature or humans in the past, and are as safe or even safer than such methods. There is gene transfer between unicellular eukaryotes and prokaryotes. There have been no known genetic catastrophes as a result of this. They argue that animal husbandry and crop breeding are also forms of genetic engineering that use artificial selection instead of modern genetic modification techniques. It is politics, they argue, not economics or science, that causes their work to be closely investigated, and for different standards to apply to it than those applied to other forms of agricultural technology.

Proponents also note that species or genera barriers have been crossed in nature in the past. An oft-cited example is today's modern red wheat variety, which is the result of two natural crossings made long ago. It is made up of three groups of seven chromosomes. Each of those three groups came from a different wild wheat grass. First, a cross between two of the grasses occurred, creating the durum wheats, which were the commercial grains of the first civilizations up through the Roman Republic. Then a cross occurred between that 14-chromosome durum wheat and another wild grass to create what became modern red wheat at the time of the Roman Empire.

Economic and political effects

  • Many opponents of current genetic engineering believe the increasing use of GM in major crops has caused a power shift in agriculture towards Biotechnology companies, which are gaining more control over the production chain of crops and food, and over the farmers that use their products, as well.[citation needed]
  • Many proponents of some current genetic engineering techniques believe it will lower pesticide usage and has brought higher yields and profitability to many farmers, including those in developing nations [11]. A few genetic engineering licenses allow farmers in less economically developed countries to save seeds for next year's planting.[citation needed]
  • In August 2002, Zambia cut off the flow of Genetically Modified Food (mostly maize) from UN's World Food Programme. This left a famine-stricken population without food aid.
  • In December 2005 the Zambian government changed its mind in the face of further famine and allowed the importation of GM maize. [12]. However, the Zambian Minister for Agriculture Mundia Sikatana has insisted that the ban on genetically modified maize remains, saying "We do not want GM (genetically modified) foods and our hope is that all of us can continue to produce non-GM foods." [13] [14]
  • In April 2004 Hugo Chávez announced a total ban on genetically modified seeds in Venezuela. [15]
  • In January 2005, the Hungarian government announced a ban on importing and planting of genetic modified maize seeds, although these were agreed authorized by the EU. [16]
  • On August 18, 2006, American exports of rice to Europe were interrupted when much of the U.S. crop was confirmed to be contaminated with unapproved engineered genes, possibly due to accidental cross-pollination with conventional crops.[36] The U.S. government has since declared the rice safe for human consumption, and exports to some countries have since resumed.

Conventional hybridization for higher yield, Genetic Engineering and the resulting loss of Biodiversity, a threat to Food Security

In agriculture and animal husbandry, green revolution popularized the use of conventional hybridization to increase yield many folds by creating "High yielding varieties". Often the handful of breeds of plants and animals hybridized originated in developed countries and were further hybridized with local verities, in the rest of the developing world, to create high yield strains resistant to local climate and diseases. Local governments and industry since have been pushing hybridization with such zeal that several of the wild and indigenous breeds evolved locally over thousands of years having high resistance to local extremes in climate and immunity to diseases etc. have already become extinct or are in grave danger of becoming so in the near future. Due to complete disuse because of un-profitability and uncontrolled intentional, compounded with unintentional crosspollination and crossbreeding (genetic pollution) formerly huge gene pools of various wild and indigenous breeds have collapsed causing widespread genetic erosion and genetic pollution resulting in great loss in genetic diversity and biodiversity as a whole[37].

A Genetically Modified Organism (GMO) is an organism whose genetic material has been altered using the genetic engineering techniques generally known as recombinant DNA technology. Genetic Engineering today has become another serious and alarming cause of genetic pollution because artificially created and genetically engineered plants and animals in laboratories, which could never have evolved in nature even with conventional hybridization, can live and breed on their own and what is even more alarming interbreed with naturally evolved wild varieties. Genetically Modified (GM) crops today have become a common source for genetic pollution, not only of wild varieties but also of other domesticated varieties derived from relatively natural hybridization[38][39][40][41][42].

It is being said that genetic erosion coupled with genetic pollution is destroying that needed unique genetic base thereby creating an unforeseen hidden crisis which will result in a severe threat to our food security for the future when diverse genetic material will cease to exist to be able to further improve or hybridize weakening food crops and livestock against more resistant diseases and climatic changes[43].

See also

References

  1. 2002 ISAAA News Release: Report Shows GM Crops Generating Global Economic, Environmental and Social Benefits
  2. 2.0 2.1 Martineau, Belinda (2001). First Fruit: The Creation of the Flavr Savr Tomato and the Birth of Biotech Foods. McGraw-Hill. p. 269. ISBN 978-0071360562.
  3. FDA Consumer Letter (September 1994): First Biotech Tomato Marketed
  4. GEO-PIE Project - Cornell University[1]
  5. A Cotton Conundrum, Perspectives on Line, North Carolina State University [2]
  6. Cotton Update 2006, Western Australian Dept. of Agriculture and Food, page 6[3]
  7. History of Monsanto at Monsanto.com[4]
  8. [5]
  9. Economic Impact of Genetically Modified Cotton in India
  10. Comparing the Performance of Official and Unofficial Genetically Modified Cotton in India
  11. Genetically Modified Foods and Organisms
  12. Adoption of Genetically Engineered Crops in the U.S. USDA ERS July 14, 2006
  13. Nuffield Council on Bioethics press release: GM crops and EU laws: G8 leaders urged to improve choice for African farmers, June 29, 2005
  14. Grand Challenges in Global Health initiative, Bill & Melinda Gates Foundation, 2003 Grand Challenge #9: Create a full range of optimal, bioavailable nutrients in a single staple plant species
  15. Yu et al, Seed-specific expression of the lysine-rich protein gene sb401 significantly increases both lysine and total protein content in maize seeds. Food Nutr Bull. 2005 26:427-31.
  16. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 2005 May;138(1):341-51. Epub 2005 Apr 15.
  17. Kasuga M, Miura S, Shinozaki K, Ya K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 2004 Mar;45(3):346-50.
  18. Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions.Genome. 2004 Jun;47(3):493-500.
  19. Zhang HX, Hodson JN, Williams JP, Blumwald E. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12832-6. Epub 2001 Oct 16.
  20. May 1, 2006 – A Breakthrough For Second Leading Killer of Children Under Five – A Medical Food for Acute Diarrhea
  21. Zavaleta et al Efficacy of rice-based oral rehydration solution containing recombinant human lactoferrin and lysozyme in Peruvian children with acute diarrhea. Pediatr Gastroenterol Nutr.
  22. Foods Derived from New Plant Varieties. Federal Register 57 104, 22984, May 29 1992, FDA, U.S. Department of Agriculture
  23. United States Food Safety System, FDA, U.S. Department of Agriculture
  24. Agbios commentary on substantial equivalence
  25. FDA, "Statement of Policy: Foods Derived from New Plant Varieties", (GMO Policy), Federal Register, Vol. 57, No. 104 (1992), p. 22991
  26. Proteomic profiling and unintended effects in genetically modified crops, Sirpa O. Kärenlampi and Satu J. Lehesranta 2006
  27. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops, G S Catchpole and others PNAS October 4, 2005 vol. 102 no. 40 14458-14462
  28. 28.0 28.1 Template:Cite paper
  29. 29.0 29.1 Federal court of Canada. Monsanto Canada Inc. v. Schmeiser Date: 20010329 Docket: T-1593-98 Retrieved 26-Mar-2006.
  30. Schubert, Robert: "Schmeiser Wants to Take It to The Supreme Court", CropChoice News, Sept. 9, 2002
  31. Quist D and Chapela IH "Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico". Nature. 414 (6863): 541–543. 2001. doi:10.1038/35107068.
  32. Christou, Paul (2002). "No Credible Scientific Evidence is Presented to Support Claims that Transgenic DNA was Introgressed into Traditional Maize Landraces in Oaxaca, Mexico". Transgenic Research. 11 (1): 3–5. doi:10.1023/A:1013903300469.
  33. "Biodiversity (Communications arising): Suspect evidence of transgenic contamination". Nature. 416 (6881): 600–601. 2002. doi:10.1038/nature738.
  34. Fedoroff, Nina V. "Prehistoric GM corn". Science. 302: 1158–1159. 2003.
  35. Schubert D "Regulatory regimes for transgenic crops". Nat Biotechnol. 23: 785–787. 2005.
  36. http://www.npr.org/templates/story/story.php?storyId=6734070
  37. “Genetic Pollution: The Great Genetic Scandal”; Devinder Sharma can be contacted at: 7 Triveni Apartments, A-6 Paschim Vihar, New Delhi-110 063, India. Email: dsharma@ndf.vsnl.net.in. CENTRE FOR ALTERNATIVE AGRICULTURAL MEDIA (CAAM)., [6]
  38. THE YEAR IN IDEAS: A TO Z.; Genetic Pollution; By MICHAEL POLLAN, The New York Times, December 9, 2001
  39. Dangerous Liaisons? When Cultivated Plants Mate with Their Wild Relatives; by Norman C. Ellstrand; The Johns Hopkins University Press, 2003; 268 pp. hardcover , $ 65; ISBN 0-8018-7405-X. Book Reviewed in: Hybrids abounding; Nature Biotechnology 22, 29 - 30 (2004) doi:10.1038/nbt0104-29; Reviewed by: Steven H Strauss & Stephen P DiFazio; 1 Steve Strauss is in the Department of Forest Science, Oregon State University, Corvallis, Oregon 97331-5752, USA. steve.strauss@oregonstate.edu; 2 Steve DiFazio is at Oak Ridge National Laboratory, Bldg. 1059, PO Box 2008, Oak Ridge, Tennessee 37831-6422 USA. difazios@ornl.gov.
  40. “Genetic pollution: Uncontrolled spread of genetic information (frequently referring to transgenes) into the genomes of organisms in which such genes are not present in nature.” Zaid, A. et al. 1999. Glossary of biotechnology and genetic engineering. FAO Research and Technology Paper No. 7. ISBN 92-5-104369-8
  41. “Genetic pollution: Uncontrolled escape of genetic information (frequently refering to products of genetic engineering) into the genomes of organisms in the environment where those genes never existed before.” Searchable Biotechnology Dictionary. University of Minnesota. , [7]
  42. “Genetic pollution: Living organisms can also be defined as pollutants, when a non-indigenous species (plant or animal) enters a habitat and modifies the existing equilibrium among the organisms of the affected ecosystem (sea, lake, river). Non-indigenous, including transgenic species (GMOs), may bring about a particular version of pollution in the vegetal kingdom: so-called genetic pollution. This term refers to the uncontrolled diffusion of genes (or transgenes) into genomes of plants of the same type or even unrelated species where such genes are not present in nature. For example, a grass modified to resist herbicides could pollinate conventional grass many miles away, creating weeds immune to the most widely used weed-killer, with obvious consequences for crops. Genetic pollution is at the basis of the debate on the use of GMOs in agriculture.” The many facets of pollution; Bologna University web site for Science Communication. The Webweavers: Last modified Tue, 20 Jul 2005
  43. “Genetic Pollution: The Great Genetic Scandal”; Devinder Sharma can be contacted at: 7 Triveni Apartments, A-6 Paschim Vihar, New Delhi-110 063, India. Email: dsharma@ndf.vsnl.net.in. CENTRE FOR ALTERNATIVE AGRICULTURAL MEDIA (CAAM)., [8]

External links

Template:External links

Template:Wikibooks

Suggested Reading

  • Jeffry M. Smith Seeds of Deception: Exposing Industry and Government Lies About the Safety of the Genetically Engineered Foods You're Eating, Yes! Books, 2003, ISBN 0972966587
  • McHughen, A. Pandora's Picnic Basket : The Potential and Hazards of Genetically Modified Foods, Oxford University Press, 2000
  • Tokar, B.(ed.) Redesigning Life? Zed Books, 2001.
  • Let Them Eat Precaution. How Politics Is Undermining the Genetic Revolution in Agriculture. By Byrne, J., Conko, G., Entine, J., Gilland, T., Hoban, T. H., Moore, P., Natsios, A. S, Newell-McGloughlin, M., Paarlberg, R. L., Prakash, C. S., Tucker Foreman, C., Edited by Jon Entine AEI Press (Washington) 2006. Facets of the GM crop debate not covered by antagonists to the technology.
  • Genetics by Nina V. Fedoroff and Nancy Marie Brown

de:Gentechnisch verändertes Lebensmittel lt:Genetiškai modifikuotas maistas sv:Genmodifierade livsmedel uk:Генетично модифікована їжа

Template:WikiDoc Sources