Cancer primary prevention

Jump to: navigation, search

Cancer Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cancer from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Social Impact

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Cancer primary prevention On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cancer primary prevention

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cancer primary prevention

CDC on Cancer primary prevention

Cancer primary prevention in the news

Blogs on Cancer primary prevention

Directions to Hospitals Treating Cancer

Risk calculators and risk factors for Cancer primary prevention

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Please help WikiDoc by adding more content here. It's easy! Click here to learn about editing.

Overview

Cancer prevention is defined as active measures to decrease the incidence of cancer. This can be accomplished by avoiding carcinogens or altering their metabolism, pursuing a lifestyle or diet that modifies cancer-causing factors and/or medical intervention (chemoprevention, treatment of pre-malignant lesions). The epidemiological concept of "prevention" is usually defined as either primary prevention, for people who have not been diagnosed with a particular disease, or secondary prevention, aimed at reducing recurrence or complications of a previously diagnosed illness.

Observational epidemiological studies that show associations between risk factors and specific cancers mostly serve to generate hypotheses about potential interventions that could reduce cancer incidence or morbidity. Randomized controlled trials then test whether hypotheses generated by epidemiological trials and laboratory research actually result in reduced cancer incidence and mortality. In many cases, findings from observational epidemiological studies are not confirmed by randomized controlled trials.

About a third of the twelve most common cancers worldwide are due to nine potentially modifiable risk factors. Men with cancer are twice as likely as women to have a modifiable risk factor for their disease. The nine risk factors are tobacco smoking, excessive alcohol use, diet low in fruit and vegetables, limited physical exercise, human papillomavirus infection (unsafe sex), urban air pollution, domestic use of solid fuels, and contaminated injections (hepatitis B and C).[1]

Primary Prevention

Diet

The consensus on diet and cancer is that obesity increases the risk of developing cancer. Particular dietary practices often explain differences in cancer incidence in different countries (e.g. gastric cancer is more common in Japan, while colon cancer is more common in the United States). Studies have shown that immigrants develop the risk of their new country, often within one generation, suggesting a substantial link between diet and cancer.[2] Whether reducing obesity in a population also reduces cancer incidence is unknown.

Despite frequent reports of particular substances (including foods) having a beneficial or detrimental effect on cancer risk, few of these have an established link to cancer. These reports are often based on studies in cultured cell media or animals. Public health recommendations cannot be made on the basis of these studies until they have been validated in an observational (or occasionally a prospective interventional) trial in humans.

Proposed dietary interventions for primary cancer risk reduction generally gain support from epidemiological association studies. Examples of such studies include reports that reduced meat consumption is associated with decreased risk of colon cancer,[3] and reports that consumption of coffee is associated with a reduced risk of liver cancer.[4] Studies have linked consumption of grilled meat to an increased risk of stomach cancer,[5] colon cancer,[6] breast cancer,[7] and pancreatic cancer,[8] a phenomenon which could be due to the presence of carcinogens such as benzopyrene in foods cooked at high temperatures.

Vaccination

Considerable research effort is now devoted to the development of vaccines to prevent infection by oncogenic infectious agents, as well as to mount an immune response against cancer-specific epitopes) and to potential venues for gene therapy for individuals with genetic mutations or polymorphisms that put them at high risk of cancer.

As reported above, a preventive human papillomavirus vaccine exists that targets certain sexually transmitted strains of human papillomavirus that are associated with the development of cervical cancer and genital warts. The only two HPV vaccines on the market as of October 2007 are Gardasil and Cervarix.

References

  1. Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M (2005). "Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors". Lancet. 366 (9499): 1784–93. doi:10.1016/S0140-6736(05)67725-2. PMID 16298215.
  2. Buell P, Dunn JE (1965). "Cancer mortality among Japanese Issei and Nisei of California". Cancer. 18: 656–64. PMID 14278899.
  3. Slattery ML, Boucher KM, Caan BJ, Potter JD, Ma KN (1998). "Eating patterns and risk of colon cancer". Am. J. Epidemiol. 148 (1): 4–16. PMID 9663397.
  4. Larsson SC, Wolk A (2007). "Coffee consumption and risk of liver cancer: a meta-analysis". Gastroenterology. 132 (5): 1740–5. doi:10.1053/j.gastro.2007.03.044. PMID 17484871.
  5. Ward MH, Sinha R, Heineman EF; et al. (1997). "Risk of adenocarcinoma of the stomach and esophagus with meat cooking method and doneness preference". Int. J. Cancer. 71 (1): 14–9. PMID 9096659.
  6. Sinha R, Peters U, Cross AJ; et al. (2005). "Meat, meat cooking methods and preservation, and risk for colorectal adenoma". Cancer Res. 65 (17): 8034–41. doi:10.1158/0008-5472.CAN-04-3429. PMID 16140978.
  7. Steck SE, Gaudet MM, Eng SM; et al. (2007). "Cooked meat and risk of breast cancer--lifetime versus recent dietary intake". Epidemiology (Cambridge, Mass.). 18 (3): 373–82. doi:10.1097/01.ede.0000259968.11151.06. PMID 17435448.
  8. Anderson KE, Kadlubar FF, Kulldorff M; et al. (2005). "Dietary intake of heterocyclic amines and benzo(a)pyrene: associations with pancreatic cancer". Cancer Epidemiol. Biomarkers Prev. 14 (9): 2261–5. doi:10.1158/1055-9965.EPI-04-0514. PMID 16172241.



Linked-in.jpg