ALG8

Jump to: navigation, search


Asparagine-linked glycosylation 8 homolog (S. cerevisiae, alpha-1,3-glucosyltransferase)
Identifiers
Symbol(s) ALG8; MGC2840
External IDs OMIM: 608103 MGI2141959 Homologene6931
RNA expression pattern

PBB GE ALG8 203545 at tn.png

More reference expression data

Orthologs
Human Mouse
Entrez 79053 381903
Ensembl ENSG00000159063 ENSMUSG00000035704
Uniprot Q9BVK2 Q3TKP5
Refseq NM_001007027 (mRNA)
NP_001007028 (protein)
NM_199035 (mRNA)
NP_950200 (protein)
Location Chr 11: 77.49 - 77.53 Mb Chr 7: 97.25 - 97.27 Mb
Pubmed search [1] [2]

Asparagine-linked glycosylation 8 homolog (S. cerevisiae, alpha-1,3-glucosyltransferase), also known as ALG8, is a human gene.[1]


This gene encodes a member of the ALG6/ALG8 glucosyltransferase family. The encoded protein catalyzes the addition of the second glucose residue to the lipid-linked oligosaccharide precursor for N-linked glycosylation of proteins. Mutations in this gene have been associated with congenital disorder of glycosylation type Ih (CDG-Ih). Alternatively spliced transcript variants encoding different isoforms have been identified.[1]


References

Further reading

  • Jaeken J (2005). "Congenital disorders of glycosylation (CDG): update and new developments.". J. Inherit. Metab. Dis. 27 (3): 423–6. PMID 15272470. 
  • Jaeken J, Carchon H (2004). "Congenital disorders of glycosylation: a booming chapter of pediatrics.". Curr. Opin. Pediatr. 16 (4): 434–9. PMID 15273506. 
  • Adams MD, Kerlavage AR, Fleischmann RD; et al. (1995). "Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence.". Nature. 377 (6547 Suppl): 3–174. PMID 7566098. 
  • Stanchi F, Bertocco E, Toppo S; et al. (2001). "Characterization of 16 novel human genes showing high similarity to yeast sequences.". Yeast. 18 (1): 69–80. PMID 11124703. doi:10.1002/1097-0061(200101)18:1<69::AID-YEA647>3.0.CO;2-H. 
  • Oriol R, Martinez-Duncker I, Chantret I; et al. (2003). "Common origin and evolution of glycosyltransferases using Dol-P-monosaccharides as donor substrate.". Mol. Biol. Evol. 19 (9): 1451–63. PMID 12200473. 
  • Strausberg RL, Feingold EA, Grouse LH; et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. PMID 12477932. doi:10.1073/pnas.242603899. 
  • Chantret I, Dancourt J, Dupré T; et al. (2003). "A deficiency in dolichyl-P-glucose:Glc1Man9GlcNAc2-PP-dolichyl alpha3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation.". J. Biol. Chem. 278 (11): 9962–71. PMID 12480927. doi:10.1074/jbc.M211950200. 
  • Ota T, Suzuki Y, Nishikawa T; et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. PMID 14702039. doi:10.1038/ng1285. 
  • Schollen E, Frank CG, Keldermans L; et al. (2004). "Clinical and molecular features of three patients with congenital disorders of glycosylation type Ih (CDG-Ih) (ALG8 deficiency).". J. Med. Genet. 41 (7): 550–6. PMID 15235028. 
  • Gerhard DS, Wagner L, Feingold EA; et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. PMID 15489334. doi:10.1101/gr.2596504. 
  • Otsuki T, Ota T, Nishikawa T; et al. (2007). "Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.". DNA Res. 12 (2): 117–26. PMID 16303743. doi:10.1093/dnares/12.2.117. 
  • Kimura K, Wakamatsu A, Suzuki Y; et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.". Genome Res. 16 (1): 55–65. PMID 16344560. doi:10.1101/gr.4039406. 
</dl>

Linked-in.jpg