ACVR2A

Jump to: navigation, search


Activin A receptor, type IIA
PBB Protein ACVR2A image.jpg
PDB rendering based on 1bte.
Available structures: 1bte, 1lx5, 2goo
Identifiers
Symbol(s) ACVR2A; ACTRII; ACVR2
External IDs OMIM: 102581 MGI102806 Homologene20391
Orthologs
Human Mouse
Entrez 92 11480
Ensembl ENSG00000121989 ENSMUSG00000052155
Uniprot P27037 Q8BRV4
Refseq NM_001616 (mRNA)
NP_001607 (protein)
NM_007396 (mRNA)
NP_031422 (protein)
Location Chr 2: 148.32 - 148.4 Mb Chr 2: 48.64 - 48.72 Mb
Pubmed search [1] [2]
Activin receptor type-2A
Protein Structure/Function
Domains: TS domain, S/T domain
Other
Taxa expressing: Homo sapiens; homologs: many metazoan phyla
Enzymatic Data
Cofactor(s): Magnesium or manganese

Activin A receptor, type IIA, also known as ACVR2A, is a human gene.[1] ACVR2A is an activin type 2 receptor.

This gene encodes activin A type II receptor. Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I (I and IB) and two type II (II and IIB) receptors. These receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors. Type II receptors are considered to be constitutively active kinases.[1]

References

Further reading

  • Welt CK (2002). "The physiology and pathophysiology of inhibin, activin and follistatin in female reproduction.". Curr. Opin. Obstet. Gynecol. 14 (3): 317–23. PMID 12032389. 
  • Matzuk MM, Bradley A (1992). "Cloning of the human activin receptor cDNA reveals high evolutionary conservation.". Biochim. Biophys. Acta. 1130 (1): 105–8. PMID 1311955. 
  • Donaldson CJ, Mathews LS, Vale WW (1992). "Molecular cloning and binding properties of the human type II activin receptor.". Biochem. Biophys. Res. Commun. 184 (1): 310–6. PMID 1314589. 
  • Mathews LS, Vale WW (1991). "Expression cloning of an activin receptor, a predicted transmembrane serine kinase.". Cell. 65 (6): 973–82. PMID 1646080. 
  • Xu J, McKeehan K, Matsuzaki K, McKeehan WL (1995). "Inhibin antagonizes inhibition of liver cell growth by activin by a dominant-negative mechanism.". J. Biol. Chem. 270 (11): 6308–13. PMID 7890768. 
  • Attisano L, Cárcamo J, Ventura F; et al. (1993). "Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors.". Cell. 75 (4): 671–80. PMID 8242742. 
  • Peng C, Huang TH, Jeung EB; et al. (1994). "Expression of the type II activin receptor gene in the human placenta.". Endocrinology. 133 (6): 3046–9. PMID 8243335. 
  • De Winter JP, De Vries CJ, Van Achterberg TA; et al. (1996). "Truncated activin type II receptors inhibit bioactivity by the formation of heteromeric complexes with activin type I. receptors.". Exp. Cell Res. 224 (2): 323–34. PMID 8612709. 
  • Attisano L, Wrana JL, Montalvo E, Massagué J (1996). "Activation of signalling by the activin receptor complex.". Mol. Cell. Biol. 16 (3): 1066–73. PMID 8622651. 
  • Liu QY, Niranjan B, Gomes P; et al. (1996). "Inhibitory effects of activin on the growth and morpholgenesis of primary and transformed mammary epithelial cells.". Cancer Res. 56 (5): 1155–63. PMID 8640777. 
  • Nishitoh H, Ichijo H, Kimura M; et al. (1996). "Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5.". J. Biol. Chem. 271 (35): 21345–52. PMID 8702914. 
  • Lebrun JJ, Vale WW (1997). "Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and type II activin receptors and human erythroid differentiation.". Mol. Cell. Biol. 17 (3): 1682–91. PMID 9032295. 
  • Macías-Silva M, Hoodless PA, Tang SJ; et al. (1998). "Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2.". J. Biol. Chem. 273 (40): 25628–36. PMID 9748228. 
  • Barbara NP, Wrana JL, Letarte M (1999). "Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily.". J. Biol. Chem. 274 (2): 584–94. PMID 9872992. 
  • Lux A, Attisano L, Marchuk DA (1999). "Assignment of transforming growth factor beta1 and beta3 and a third new ligand to the type I receptor ALK-1.". J. Biol. Chem. 274 (15): 9984–92. PMID 10187774. 
  • D'Abronzo FH, Swearingen B, Klibanski A, Alexander JM (1999). "Mutational analysis of activin/transforming growth factor-beta type I and type II receptor kinases in human pituitary tumors.". J. Clin. Endocrinol. Metab. 84 (5): 1716–21. PMID 10323406. 
  • Ebisawa T, Tada K, Kitajima I; et al. (2000). "Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation.". J. Cell. Sci. 112 ( Pt 20): 3519–27. PMID 10504300. 
  • van Schaik RH, Wierikx CD, Timmerman MA; et al. (2000). "Variations in activin receptor, inhibin/activin subunit and follistatin mRNAs in human prostate tumour tissues.". Br. J. Cancer. 82 (1): 112–7. PMID 10638976. doi:10.1054/bjoc.1999.0886. 
  • Shoji H, Tsuchida K, Kishi H; et al. (2000). "Identification and characterization of a PDZ protein that interacts with activin type II receptors.". J. Biol. Chem. 275 (8): 5485–92. PMID 10681527. 
  • Bondestam J, Horelli-Kuitunen N, Hildén K; et al. (2000). "Assignment of ACVR2 and ACVR2B the human activin receptor type II and IIB genes to chromosome bands 2q22.2-->q23.3 and 3p22 and the human follistatin gene (FST) to chromosome 5q11.2 by FISH.". Cytogenet. Cell Genet. 87 (3-4): 219–20. PMID 10702675. 
</dl>

Linked-in.jpg