# Data Coordination and Management in Cardiovascular Disease

C. Michael Gibson, M.S., M.D.



#### Chairman, PERFUSE Study Group

Founder and Chairman, WikiDoc & WikiPatient, The World's Open Source Textbook of Medicine Viewed 896 Million Times A Year

# **Data Coordination and Management Overview**

- Goals of a Data Coordinating Center
- Study Design and Importance of Sample Size
- Role of Substudies
- Data Collection and Case Report Forms
- Active Trial Management

# **Goals of a Data Coordinating Center**

- Assist in Study Design and Exploration of Study Objectives in varying scenarios
- Process, Clean, and Organize data
- Perform primary and secondary analyses of data

The ultimate goal is to be able to synthesize data ACROSS studies and to develop a library of data that is easily accessible and easy to query

# Academic Research Organization (ARO)

#### Non profit/academic

- Usually associated with an academic medical center
- Benefit: Able to analyze data and publish scientific manuscripts from the trial database in a timely and cost efficient manner
- Examples include:
  - TIMI (Thrombolysis In Myocardial Infarction)
  - HCRI (Harvard Clinical Research Institute)
  - DCRI (Duke Clinical Research Institute)
  - C5 (Cleveland Clinical Coordinating Center)

# The Spectrum of Clinical Trials

#### Registry

Case Control study Single Center Randomized study Multi-Center Randomized study

Retrospective

Weak

Prospective

Strong



 Each clinical trial must have a primary question the study seeks to address

- The question the study is most interested in answering
- used for the primary sample size calculation
- should be framed in the form of a hypothesis

 Primary question as well as all secondary questions should be clearly defined and stated in advance

#### **Study objectives - Example**

 Demonstrate an improvement in epicardial patency with emergency room-based eptifibatide administration vs cath lab-based eptifibatide administration among ST elevation MI patients

# **Study objectives - Specifying hypotheses**

Hypotheses for a two-sided test to demonstrate a difference between interventions

Patency rate <u>not</u> higher with ER-based administration of eptifibatide vs cath lab based administration

 $H_0$ :  $S_T = S_C$ 

 $H_A : S_T \neq S_C$ 

Patency rate higher with ER-based administration of eptifibatide vs cath lab based administration

Want to reject the null hypothesis of no difference

REJECT: Patency rate <u>*not*</u> higher with ER-based administration of eptifibatide vs cath lab based administration

# **Study objectives - Secondary questions**

- Major secondary questions, like the primary question, should be stated in advance
- May be related to the primary question (e.g. cardiovascular death in a study of mortality)
- Sample size calculations should also be considered
- May be related to a subgroup of patients

# **Study objectives - Subgroups**

- Results from subgroup analyses should be considered with caution
  - If enough statistical tests are done, some will be significant by chance (Type I Error)
  - Number of patients in a subgroup may be too small to show any difference even if one truly exists (Type II Error)
  - Looking for consistency with overall trial results

#### **Sample Size Considerations**

Sample size needed to show a statistically robust difference in treatments

 Sample size usually based on primary endpoint, although can be based on secondary endpoint

# **Sample Size Considerations**

- Sample size estimate based on three factors:
  - Estimated event rate in control arm (generally based on historical data)
  - Expected treatment difference
  - Acceptable error
    - alpha error p-value
    - Beta error Power



• The study has an 80% odds of detecting a 20% treatment effect if it really exists (p<0.05)

– Power 80%

- 20% treatment effect
- 2 sided test with p<0.05</p>

# **The Spectrum of Clinical Trials**

Registry

Case Control study Single Center Randomized study Multi-Center Randomized study

Retrospective

Weak

Prospective

Strong

# **Basic study designs**

• Randomized controlled clinical studies are the standards against which all other studies are compared

 Randomization assigns patients to either the intervention group or control group "with the same probability"

#### Basic study designs - Randomized controls

- Advantages of randomizing treatment assignment
  - eliminates selection biases
  - produces comparable groups with respect to known (and unknown) risk factors
  - increases validity of statistical tests

# Basic study designs – Non-randomized controls

- Patients are assigned to one of two groups, but not in a random fashion
- Patients are assigned concurrently
  - e.g., First patient in ER with MI treated with PCI, second patient in ER treated with lytic+PCI
- Advantages: easier to convince patients and investigators to participate
- Disadvantages: potential of ending up with groups that are not comparable

#### **Basic study designs - Historical controls**

- New intervention is studied in all patients prospectively
- Results are compared to the outcome from a previous study of comparable patients
- Historical controls are non-randomized, non-concurrent

# **Basic study designs - Historical controls**

- Arguments for historical controls
  - all patients receive the "new" intervention
  - greater participation from investigators, patients
  - shorter studies

# **Basic study designs - Historical controls**

- Concerns when using historical controls
  - accuracy and completeness when collected
  - open to bias
  - changes in patient population or patient management over time

 A historical control study is no substitute for a randomized control clinical trial

#### **Data Collection Tools: Case Report Forms**

 Case report forms should be designed to balance the need for parsimony and ease of data acquisition at the clinical site, with the scientific goal of obtaining a comprehensive and exhaustive data set

#### **Case Report Form Design Requirements**

- Capture the pre-specified endpoints of the trial
- Capture both expected and unexpected events
- Limit data collection to those items essential to the study's goals and that are practical to gather

- Capture the specific nuances associated with specific medications:
  - Thienopyridine
    - which thienopyridine
    - at what dose (for load and maintenance)
    - timing of dose (pre or post-PCI, how long in advance)
  - Devices
    - which stent (type, DES or bare metal)
    - what was the sequence of devices used (balloon or direct stent)
    - what segment were they used in

#### **Case Report Form Design Requirements**

Questions must be clear to the user

- Careful attention to the "flow" of forms and questions
  - logical progression
  - concise instructions on each form questions directly relate to the protocol

Instructions are aimed to assist the user

 Limit the amount of free text, use tickboxes - utilize a narrative summary form

# Data Management

- Many programs available with different costs and skills needed
  - Expensive:
- ClinTrials
- Velos
- Inexpensive:
- Access
- Excel

#### Data Cleaning & Double Data Entry

#### Cleaning algorithm detects that first entry does not equal second entry

| Entry 1 | Entry 2 | ₹ |                               |
|---------|---------|---|-------------------------------|
| 1       | 1       | 1 |                               |
| 2       | 2       | 2 |                               |
| 3       | 3       | 3 |                               |
| 4       | 4       | 4 |                               |
| 5       | 50      | 5 | Adjudicated by CMG on 1/26/05 |
|         |         |   |                               |

Cleaning algorithm detects that value lies outside of range, up to 5 in this case Electronic paper trail created  Release of data may have impact on market valuation, therefore must be kept secure

- Data coordinating center is secure
- Minimize transmission of data over the internet
- Critical data on one PC (not one network or multiple PCs), password protected

 Data PCs not connected to internet, cannot be "hacked into"

#### Database Management: The Academic Perspective

#### • Goals:

- Conduct trials
- Perform substudies
  - Subgroup analyses of treatment effect
  - Pathophysiology, hypothesis generating
- Plan future trials
  - Anticipated event rates
  - Sample size estimates
  - Subgroup analyses