Statistical Considerations and Methodologies

C. Michael Gibson, M.S., M.D.

Chairman, PERFUSE Study Group

Founder and Chairman, WikiDoc & WikiPatient, The World's Open Source Textbook of Medicine Viewed 896 Million Times A Year

Decisions have been made

- You have defined your objectives
- You have chosen your study design
- What are the next steps?

Set up your Hypotheses

- Hypothesis testing is a method of determining
 - if what you are seeing is a meaningful difference
 - or are you seeing a difference due to chance

Hypothesis Testing

- Why do we care about hypothesis testing?
 - This is how we can make statistical conclusions about our data.
 - FDA requires it for safety or effectiveness analysis.

Hypothesis Testing Overview

- What is involved in setting up a hypothesis test?
 - An objective is needed (what do you want to prove)
 - α and β (Significance and Power levels)
 - Critical Difference
 - Measure of the variability (Standard Deviation) for continuous data (noted: σ)

Components of the Hypothesis

- H_0 and H_A
- H_A: The alternative hypothesis, this is what you want to prove
- H₀: The null hypothesis, the opposite of what is stated in H_A

Alpha and Beta Errors

		Decision	
		Reject H ₀	Do not Reject H ₀
	H ₀ is True	Type I Error	Correct
State of		(:False+)	
Nature	H ₀ is False	Correct	Type II Error
			(: False -)

Alpha and Beta Errors

- Alpha (α) is typically set at 0.05 resulting in 95% confidence.
 - Z_{α} is the notation used in the sample size calculations
- 1- β is called Power. Power is the probability of rejecting H₀ given H₀ is false.
 - $-\beta$ is typically set at 0.2 resulting in 80% power. A minimum of 80% power is desired.
 - Z_{β} is the notation used in the sample size calculations

Two-sided vs. One-sided

- Two-sided tests are used:
 - When you aren't sure of how the treatment will affect the patient
 - When you are trying to show improvement and you need to make sure that you are doing no harm as well
- One-sided tests are used:
 - When you want to be no worse than the control

Safety Objective

- Case Study of a Safety Objective
 - There is a new pacemaker and you want to make sure that it is as safe as the previous marketed pacemakers.
 - One way of testing for safety is to look at the complication rate a 3 months of the new pacemaker vs. a standard

Safety Objective

- The complication rate from the previous technology may be considered an Objective Performance Criteria (OPC).
- This means that the control group for this objective is a percentage at 3 months.

Safety Objective

- What do we know about the previous pacemaker studies (Historical Control)?
 - The overall observed rate in the Historical Control is 92%.
 - Of the individual studies in the Historical Control, the worst rate is 85%.
 - Our critical difference will then be 92%-85%=7%

Safety Objective

- Objective: To demonstrate the safety of the New Pacemaker.
- Hypothesis: The freedom from complications experienced with the New Pacemaker will be clinically equivalent (within 7%) to the Historical Control rate at 3 months.

 $H_0: S_{New Pacemaker} \le 85\%$ at 3 months

H_A: S_{New Pacemaker} > 85% at 3 months

Safety Objective

- Alpha and Power.
- We will use the standard of 95% significance and 80% power.
- The points from the Normal Distribution that correspond to the appropriate level of significance are: $Z_{0.95} = 1.645$ (one-sided) $Z_{0.8} = 0.842$

Sample Size Calculations (Comparison to a Standard)

Comparing a proportion to a standard

$$N = \frac{Z \sqrt{p_0(1 p_0)} + Z \sqrt{p_a(1 p_a)}^2}{\left(p_0 p_a\right)^2}$$

• From our example:

$$N = \frac{\begin{bmatrix} 1.645\sqrt{0.85(1 \quad 0.85)} + 0.842\sqrt{0.92(1 \quad 0.92)} \end{bmatrix}^2}{(0.85 \quad 0.92)^2} = 136$$

- Your company has invented a new pacing lead that is supposed to reduce battery longevity by increasing the impedance of the lead.
- You want to prove that the impedance is clinically higher for the experimental product over the control.

This study will be a randomized study with an experimental and control group.

- It has been determined that a clinically meaningful increase in longevity is 6 months. This translated to a 300 ohm difference (d).
- A conservative standard deviation (σ) from the control group is 400 ohms.

- Objective: To demonstrate the effectiveness of the pacing impedance.
- Hypothesis: The New Lead pacing impedance at 3 months will be clinically superior (by 300 ohms) to the control impedance at 3 months.
 - $\begin{array}{l} H_0: Mean \\ H_A: Mean \\ New Lead Impedance \end{array} = \begin{array}{l} Mean \\ \neq \end{array} \begin{array}{l} Control Impedance \\ Control Impedance \end{array}$

- Alpha and Power.
- We will use the standard of 95% significance and 80% power.
- The points from the Normal Distribution that correspond to the appropriate level of significance are: $Z_{0.95} = 1.96$ (two-sided) $Z_{0.8} = 0.842$

Comparing Two Samples

Comparing Two Means (Total sample size)

$$N = \frac{4 Z_{/2} + Z^{2}}{d^{2}}$$

• From our example: $N = \frac{4(1.96 + 0.842)^2 \, 400^2}{300^2} = 56 \ (28 \, per \, group)$

Time to Event Statistics (Survival Analysis)

Time in Months

Survival Analysis

- The following is needed for each individual:
 - The start date and last known follow-up date
 - The date of an event (if it has occurred)
 - Status (lost to follow-up date, death date)
- From this information the follow-up time is calculated
- The survival probability is 1- the event probability.

Survival Analysis

- The cumulative survival for a certain data point is calculated as:
 - a percentage for each event
 - then multiplied together to obtain the cumulative percentage.
- The denominator that is used is the number remaining at that point in time.

Survival Analysis Example

Months	Survival	Cumulative Number Failed	Number Left
0	1.00	0	22
2	0.9545 1/22=0.0455	1	21
3	0.9091 1/21=0.0476 (0.9524) 0.9545*0.9524= 0.9091	2	20
4	0.9091	2	19

- There may be some instances where you may want to conduct interim analyses
- Repeated testing increases the overall significance level to > 0.05
- Repeated testing comes with a price as total required sample size increases

Stopping Rule Methods

- Statistical tests are conducted along interim points in the study and then the p-value is compared to an appropriate significance level.
- There are a number of methods available to "spend" your alpha level.

Spending Functions

- One way to look at the data would be 5 times, when you have 20%, 40%, 60%, 80%, and 100% of your events collected.
- Pocock would suggest the same significance level of 0.016 for each of the 5 tests.
- O'Brien Fleming would suggest a range of extremely small to 0.0413.

Spending Functions

Alpha Level

Meta Analysis

- A method used to combine data from various sources.
- This data is then used as a comparison group, "control", for your study.

Conclusions

- Define what you are clinically wanting to prove.
- Choose your study design appropriately
- Use the objective to write a hypothesis
- Calculate the sample size using a clinically meaningful difference

Sample Size Calculations

Comparing a proportion to a standard

$$N = \frac{Z_{2} \sqrt{p_0(1 p_0)} + Z_{2} \sqrt{p_a(1 p_a)}^{2}}{\left(p_0 p_a\right)^{2}}$$

• Comparing a mean to a standard

$$N = \frac{Z + Z^{2}}{d^{2}}$$

Comparing Two Samples

Comparing Two Proportions

$$N = \frac{2 Z_{/2} \sqrt{p_0(1 p_0)} + Z \sqrt{(p_c(1 p_c) + p_e(1 p_e))^2}}{(p_c p_e)^2}$$
Where $p_0 = \frac{(p_c + p_e)}{2}$
Comparing Two Means (Total N
$$A Z_{/2} + Z \frac{2 2}{d^2}$$

Equivalence for Two Samples (Blackwelder's Formula)

Equivalence for two proportions (each group)

$$N = \frac{(Z_1 + Z_1)^2 \left[p_0 (1 p_0) + p_1 (1 p_1) \right]}{\left(p_0 p_1 \right)^2}$$

 In equivalence testing, usually p₀=p₁ unless there is a known expected difference. The δ is the equivalence difference.

Equivalence for Two Samples (Blackwelder's Formula Adapted)

Equivalence for Two Means (each group)

$$N = \frac{(Z_{1} + Z_{1})^{2} \begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix}}{(2 - 2)^{2}}$$

• In equivalence testing, δ is the equivalence difference.

Book References

- Friedman, L.M., Furberg, C.D. and DeMets, D.L., <u>Fundamentals of Clinical Trials</u>, PSG Publishing Company, Inc. (1985)
- Pocock, S.J. <u>Clinical Trials- A Practical</u> <u>Approach</u>, John Wiley & Sons, Inc., (1983)
- Blackwelder, W.C., " 'Proving the Null Hypothesis' in Clinical Trials", Controlled Clinical Trials, 3:345-353, (1982)